
ConvexMerger: Algorithmic Optimisations & Challenges
An area maximisation game based on the idea of merging convex shapes

Roan Hofland
Eindhoven University of Technology
r.w.p.hofland@student.tue.nl

Emiliyan Greshkov
Eindhoven University of Technology

e.greshkov@student.tue.nl

14th of May, 2023

Supervisor
Irina Kostitsyna (i.kostitsyna@tue.nl)

1

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Contents

1 Introduction 3

2 Previous Work 4

3 Algorithms 5
3.1 Convex Object Merging . 6
3.2 Dynamic Vertical Decomposition . 7
3.3 Efficient Segment Intersection Testing . 9
3.4 Miscellaneous Algorithms . 12

3.4.1 Conjugate computation . 12
3.4.2 Line extension and clipping . 14
3.4.3 Hull splitting . 14
3.4.4 Helper line computation . 15

4 Evaluation 16
4.1 Construction Characteristics of Partition Trees . 16
4.2 Average depth of segments in Segment Partition Trees . 17
4.3 Segments per node in Segment Partition Trees . 17
4.4 Trapezoid depth in the Vertical Decomposition . 18

5 Visualisations 19
5.1 Vertical Decomposition . 20
5.2 Segment Partition Tree . 20
5.3 Merge Callipers . 22

6 Concluding Remarks 22

A Datasets 23
A.1 Dataset (Large) . 24
A.2 Dataset (Medium) . 24
A.3 Dataset (20-40) . 24
A.4 Dataset (15-30) . 25
A.5 Dataset (10-25) . 25
A.6 Dataset (Small) . 26
A.7 Dataset (Segmentation) . 26
A.8 Dataset (Decomposition) . 27

Version History

Version Date Comment

v1.0 2023-01-25 Initial version
v1.1 2023-03-08 Handle initial feedback & finish remaining sections
v1.2 2023-03-29 Various minor improvements to most sections
v1.3 2023-05-14 Various minor improvements based on received feedback

v1.3 2/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

1 Introduction

This work describes in detail the effort and results of a Geometric Algorithms Capita Selecta project. The goal
of the project is to improve the processing of several key elements of ConvexMerger, an area maximisation game
based on merging convex shapes. The focus is on improving the data structures and algorithms for efficient
handling of several key operations or to come up with novel optimised solutions and to implement them. The
key operations are point location, convex object merging, and segment intersection testing. Secondary goals
include the addition of more and better animations and general code quality improvements.

In ConvexMerger, up to four players compete against each other in a playfield populated with non-overlapping
convex objects. The goal of each player is to claim as large an area as possible while competing against their
opponents. Players take turns sequentially and during their turn a player can do one of two actions:

1) They can claim a new object which has not yet been claimed by any player.

2) They can merge one of their claimed objects with another object that is either unowned or is owned by
them. When two objects are merged they are replaced by a new convex object that has the shape of
the convex hull of the two merged objects. A merge is not allowed if there are any other objects on the
boundary of the resulting convex object. However, objects fully contained within the result will be stolen
from their current owner.

Figure 1a depicts a playfield where two players have each claimed a single object, and Figure 1b depicts a
possible next move. In the followup Player 1 merges their claimed object with an unowned object, resulting in
an object that absorbs Player 2’s claimed object.

The objects on the initial playfield are convex and new objects created through merging are also convex.
It is possible to play the game with up to four players, some or all of which can be Artificial Intelligence (AI)
players, and it is possible to play online multiplayer. The game ends when the active player has no moves left,
at which point the player with the largest owned area wins. The game is also available as open source software
on GitHub 1.

ConvexMerger can be played entirely with the mouse. As mentioned, players can either claim an object or
merge objects during their turn. Next we will give a more formal description of the merge of two objects. Let
us refer to the selected object as the source of the merge s, to the other object as the target t, and to the convex
hull that would result from the merge as r. The merge between s and t is only allowed if the boundary of r
does not intersect any other object’s boundary. If the merge is allowed, then r is created, and s, t and any other
objects on the interior of r are absorbed into it, including objects that are claimed by other players. The game
promotes strategic thinking for the selection of objects to claim and setting up advantageous merges is crucial
to winning. For example, while a naive playstyle would be to always play the move that yields the largest
increase in area for that turn, this strategy is unlikely to win in a serious game. In fact, one of the implemented
AI players (Isla) follows this strategy. Instead, it is more beneficial to consider the long term gains. This can
for example be done by merging two smaller objects into a longer object that can be merged with an object on
the other side of the playfield next turn. Alternatively, extremely large merges like this can be used to try to
absorb objects from an opposing player.

(a) A playfield where Player 1 and Player 2 have made a
single object selection each.

(b) The same playfield right as Player 1 has chosen to merge,
absorbing Player 2’s claimed object.

Figure 1: Example of a merge on a generated playfield.

The game has several types of events that trigger throughout execution. One event is the human clicking on
the playfield, which triggers a point location query. If the point is located to be inside an object, then that

1https://github.com/RoanH/ConvexMerger

v1.3 3/27

https://git.roanh.dev/roan/convexmerger

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

object is to be selected or claimed if possible. Another event is the attempt of a merge. Here a few things
happen. First, the segments that will be added to complete the merge are computed. These are the segments
on the boundary of the result r that are part of neither s nor t, and we call these merge segments. Afterwards,
the merge segments are tested for intersection with any other segments. If they intersect nothing, the merge is
executed and the underlying data structures are updated, otherwise the merge is rejected.

At the start of this project, the result of Convex Object merges was computed using the Jarvis March
algorithm, also known as the Gift Wrapping Algorithm [23]. The same algorithm was used for computing the
helper lines visible while a player has selected an object that they want to merge from. For point location
queries, we used the Vertical Trapezoidal Decomposition data structure [17], rebuilding it after each convex
object merge. Segment intersection testing was done trivially, i.e. the query segment was compared against
every segment of every object.

The main contributions of this project comprise optimisations to the computation of convex hull merges,
point location queries, and segment intersection testing. A secondary contribution is the addition of visualisa-
tions for each of the improved algorithms. Convex hull merges were improved with a two-pass algorithm that
computes both the segments needed to merge a pair of convex objects and the resulting hull of the merge. A
more detailed explanation is available in Section 3.1 and the corresponding visualisation is described in Section
5.3. Point location query handling was improved by dynamically updating the previously static vertical trape-
zoidal decomposition instead of rebuilding it at every update, resulting in worst-case O(log n) query times and
O(n) update times. Further details on this can be seen in Section 3.2 and the corresponding visualisation is
showcased in Section 5.1. Segment intersection testing is improved using partition trees to divide the plane and
only test a subset of the segments stored only at some plane subdivisions. Two types of partition trees were
implemented, and the use of conjugation trees is particularly interesting, as the static set of points throughout
the game and the insertion of segments means that the structure does not need to be dynamic, resulting in
O(n0.695) query and O(log n) update times. We also looked into engineering a novel structure for intersection
testing, and found several existing structures that would not work well for ConvexMerger. Further details on
segment intersection testing can be found in Section 3.3 and the corresponding visualisations are discussed in
Section 5.2.

In Section 2, we will present a survey on the literature that we have found relevant to the goals of the
project. Then, in Section 3, we will go over each of the main algorithmic improvements and mention some
auxiliary algorithms. For each algorithmic improvement, we will first quickly describe and analyse the starting
point, then we will describe the idea of the improvement, perform runtime analysis, and discuss implementation
details, design choices, and issues. Section 4 contains an evaluation on the performance and characteristics of
the implemented data structures. Section 5 presents the various visualisations that showcase the structures on
top of the playfield and the animations that can be triggered during gameplay.

2 Previous Work

Convex Hull merging The first topic we looked into was convex hull merging, more specifically the problem
of determining the common convex hull of two convex objects. At the start of the project, the implemented
algorithm for convex hull computation was the Jarvis March [12]. For a set of n points it computes the convex
hull in O(nh) time, where h is the number of points on the resulting convex hull. It does so by first finding the
leftmost of the points, p0, first (bottom one if multiple), then finding the point p1 such that the line p0p1 has
the smallest angle to the positive y axis. Both points are on the hull, and each next point pi on the hull can
be selected as the point such that the line pi−1pi has the smallest angle to pi−2pi−1. We find h points this way,
with each point requiring up to n comparisons, leading to the described running time.

A faster alternative for finding the convex hull of a set of n points is Graham’s scan [11], which sorts all points
around an interior point and adds them to the hull in order while removing the middle points of concavities
during addition. The algorithm runs in O(n log n) time, dominated by the radial sort. Finding an interior point
and the construction of the hull take linear time each. Several even faster algorithms exist, such as Chan’s
algorithm which uses a combination of Graham’s scan and the Jarvis March for an O(n log h) runtime [4].

Another angle to attack the problem is based on the ‘rotating callipers’ approach, originally introduced by
Shamos [18] as an advancing algorithm for finding the intersection of two convex polygons. Toussaint finds
how to use the rotating calipers to compute the bridge lines between a pair of convex hulls that are required
for building their common convex hulls [22]. The algorithm does a single pass of all t points on the two hulls,
resulting in O(t) running time. The idea is that we start off with two vertical (or horizontal) lines passing through
the leftmost (bottom-most) point of each hull. Then we rotate these in the same direction simultaneously along
the boundaries of their respective hull. At exactly two angles, the lines will coincide and they will bridge the
hulls such that all points of both hulls lie on or on one side of the coincident lines. At least one point of each
hull will lie on the bridge line, and the segment between them is the bridge segment, or as we will refer to it
later – the merge segment.

v1.3 4/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Point Location using Vertical (Trapezoidal) decomposition One of the first decompositions of poly-
gons into trapezoids was done in 1981 by Lee within the context of computer graphics [13]. A couple years later
Fournier and Montuno present an approach for the triangulation of simple polygons, possibly with simple poly-
gon holes, via a trapezoidal decomposition constructed in in O(n log n) time [9]. The decomposition approach
to triangulation was then extended for any set of segments that do not intersect outside of their endpoints by
Seidel using a randomised incremental construction algorithm for a O(n log n) construction time in expectation
[17]. While linear-time algorithms for triangulation exist, the trapezoidal decomposition is simpler. Trapezoidal
decompositions can also be used for point location, with query times of O(log n) in expectation. These variants
are static, however multiple works provide dynamic versions of trapezoidal decompositions for various settings
[7, 5, 6, 10], including for the general case [2].

Segment intersection testing One of the founding works on segment intersection testing was published
in 1976 by Shamos and Hoey, and it presents an O(n log n) algorithm for checking whether an intersection
exists between any pair of n segments [19]. Bentley and Ottman present an improvement that can count the
number of intersections in O(n log n) and can find and report all k intersections in O(n log n+ k) time. These
algorithms however operate on the whole set of segments and find all intersections between them, while we are
only interested in the intersections with newly added segments. Furthermore, we only need an answer as to
whether an intersection exists, creating the opportunity of further optimisations via early stops and ordering
the search space.

We then looked in the direction of structures that support testing a query segment for intersection with any
segment from a set of n segments that do not intersect each other except at endpoints. One such structure is the
visibility polygon [1, 20], which can be used to answer whether a query segment intersects any other segments
by checking whether one of its end points can see the other. The construction of the visibility polygon is done
for a single point and takes O(n log n) time in this setting. Therefore, it must be constructed for each query
and has to be reconstructed after updates to the set of segments, leading to O(n log n) query and update times.
Since the query segments for segment intersection in ConvexMerger are only between the existing segments’
endpoints, an alternative approach would be to precompute the visibility complex of each point and take note
of what points lie within, resulting in O(n2 log n) construction and update time and faster queries.

Since we expect a lot of segment intersections, we surveyed dynamic structures that allow for fast insertion
and deletion of segments. One class of such structures are dynamic partition trees [16]. These trees are built
on top of partition trees [15], such as kd-trees [3] and conjugation trees [8]. Kd-trees alternate between vertical
and horizontal bisectors to recursively partition the points in the plane in (near-)equal halves. Conjugation
trees have one arbitrary starting bisector, and each next bisector is a conjugate of the previous, meaning that
it bisects each of the halves split by the previous bisector. It is proven in [24] that a conjugate always exists
for a bisector, and [14] provides an algorithm for computing a conjugate in linear time. Another interesting
detail is that since the point set of ConvexMerger is static, there is no need to use the dynamic conjugation tree
proposed in [16], and just the standard conjugation tree as in [8] can be used.

3 Algorithms

Geometric Setting: Before describing the algorithms it is useful to introduce the geometric setting of the
game and the assumptions that can be derived from it. These assumptions can be used when designing new
algorithms for the game, and the algorithms in this report rely on these assumptions. Note that some of these
assumptions could be considered implementation detail, meaning that algorithms could be adapted to handle a
different situation (e.g., for the 4th point, using clockwise winding order). Given that the game is based around
non overlapping convex objects, some useful assumptions can be made about the points and lines algorithms
need to work with. We will also specify some invariants we take care to maintain when merging objects. The
following list summarises the key assumption of the setting, here line segments refers to the collection of all m
boundary line segments for all the convex objects, and points refers to the collection of all n boundary points
for all the convex objects. Note that n and m initially have the same value, since each object has the same
number of boundary segments and boundary points. However, while the initial point set does not change during
the game, the set of line segments does. Each merge executed during the game results in two new line segments
being created between two preexisting points. While there are also segments that can be removed after a merge,
this is not currently done by the majority of algorithms presented in this section. Therefore, it is worthwhile
to make a distinction between n and m. However, note that the maximum number of merges during a game is
linear in the number of objects. This means that m will always be bounded by O(n).

1) None of the convex objects intersect. Note however that it is possible for remains of an object that was
absorbed in a merge to be fully contained in another convex object.

2) All convex objects have a non-zero area.

v1.3 5/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

3) The first point of the hull of points that defines a single convex object is the bottom left-most point.

4) All objects are convex and have a counter-clockwise winding order.

5) None of the line segments overlap or intersect, with the exception of the end points.

6) None of the points coincide.

7) On the boundary of a single convex object no three consecutive points are collinear. This is an invariant
we take care to maintain when merging objects.

3.1 Convex Object Merging

Convex hull merging is the core idea behind ConvexMerger. When two objects o1 and o2 are merged into r,
there are two line segments that need to be created that link o1 and o2, we call them merge segments. These
are the only line segments on the hull of r that are not on the boundary of either o1 or o2.

As mentioned in Section 1, the algorithm previously used for computing the convex hull of the merge of two
convex objects is the Jarvis March [23]. It should be noted that this approach does not directly provide us with
the merge segments. Instead, these were computed using a separate algorithm. The algorithm takes as input
the two original hulls o1 and o2 and the new hull r. It assures that o1 is the original hull with the leftmost
point, by swapping o1 and o2 if that is not initially the case. It then iterates the points of r and o1 in parallel,
both iterations starting from the bottom leftmost point on r until the points no longer coincide. Then, the last
iterated point on r, p1, is part of o1 and the current point p2 is part of o2, meaning (p1, p2) is the first merge
segment. From p2 onward, the points of r are iterated in parallel with the points on o2, and again whenever
they do not coincide, the last iterated point p3 on o2 and the current point p4 on o1 make up the second merge
segment (p3, p4). This algorithm runs in time linear to the number of points on all three input hulls.

We improve on this with an approach loosely based on the algorithm for convex polygon intersection by
Godfried Toussaint [21]. Our approach borrows the rotating caliper approach from Toussaint, which observes
that the two line segments on the merged convex hull that have an endpoint on each of the initial convex object
can be found by simultaneously rotating two lines c1 and c2, called calipers, along the peripheries of the hulls.
At exactly two moments, c1 and c2 will coincide. The points around which the calipers rotate at these moments
we call merge points, and the line segments between each pair of merge points – merge segments, or merge lines.

The calipers c1 and c2 start out vertically and oriented upwards, rotating clockwise around each object’s
leftmost point. Rotation happens simultaneously for the two calipers by the smallest angle such that the next
point on either convex object is reached. For the convex object whose point was reached, we change the rotation
point of the caliper to the farthest point in the object that the caliper intersects, skipping over collinear points.
The rotation ends whenever the calipers have rotated around all points of the two objects and have reached the
initial points. An example showing the process is given in Figure 2.

Let us name the convex object whose leftmost point is further left, or below in case of ties, o1, and the other
– o2. Observe that initially c2 does not lie counterclockwise to the orientation of c1. Whenever this changes
during rotation of the calipers, we observe that the points around which the calipers have been rotating are a
pair of merge points. Since this happens exactly twice for a pair of convex objects, the two merge lines m1 and
m2 are formed by four points mp1, mp2, mp3 and mp2. The first merge segment m1 is directed from o1 to o2
with endpoints mp1 and mp2, and m2 is oriented from o2 back to o1 with endpoints mp3 and mp4.

To obtain the convex hull of the merge, we start from the first and leftmost point of o1, since it is guaranteed
to be on the convex hull of the merge result. Then, we add all points of o1 up to and including the source point
of m1, mp1. For o2, we add all points in sequence, starting from , mp2, and ending with mp3. Finally, we add
mp4 and the remaining points of o1. In case of collinearity of points along the resulting convex hull, the middle
collinear points are excluded from the result.

The runtime analysis for this algorithm is fairly simple. As can be seen in the algorithm description, we
iterate the points for each of the input convex objects twice. Once for computing the merge lines, and a second
time for obtaining the resulting convex object. The operations during each of these iterations take constant
time, resulting in a total asymptotic runtime of Θ(t), where t is the combined number of points on o1 and o2.
Note that it is possible to compute both the merge lines and the result of the merge in a single pass, however
we decided to keep the computations separate as we use the merge segments separately for other features.

v1.3 6/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

p1

p2

p3

p4

p5 p6

p7

o1 o2

(a) Initial vertical state of calipers.

p1

p2

p3

p4

p5 p6

p7

o1 o2

(b) Reaching p5.

p1

p2

p3

p4

p5 p6

p7

o1 o2

(c) Reaching p3.

p1

p2

p3

p4

p5 p6

p7

o1 o2

(d) Reaching p6 and then the first caliper coincidence.

p1

p2

p3

p4

p5 p6

p7

o1 o2

(e) Passing through p7, p2, reaching p4 and the second
caliper coincidence.

p1

p2

p3

p4

p5 p6

p7

o1 o2

(f) Reaching p1 again and finishing the rotation, reaching
initial position.

Figure 2: Example depicting how the merge lines are found. The calipers start out vertically at the leftmost
points and ”roll” around a convex object each. Whenever the calipers coincide, a merge line is found.

3.2 Dynamic Vertical Decomposition

Point location in ConvexMerger is used to determine whether the location that the user has clicked on is inside
a convex object and if so – which object was clicked on. Initially, point location queries were done naively,
where each query point p was checked for containment in every convex object, resulting in a runtime equal to
O(m), since each segment is part of one object.

Before the start of this project, we implemented a Vertical Decomposition structure that partitions the
playfield into trapezoids whose parallel segments are both vertical. Every query point p is consecutively tested
whether it lies left or right of points and below or above segments, in order to determine which trapezoid p lies
within. The control sequence of which points and segments are to be checked is stored within a search structure,
which is a directed acyclic graph that has an expected height of O(logm) whenever the random incremental
construction (RIC) approach is used to initialise the decomposition. Lastly, whenever the trapezoid that p lies
within is discovered, the convex object that the trapezoid lies within is considered. Each trapezoid is part of
at most one convex object at a time, and as such in ConvexMerger we represent this link in the form of a
mapping function from trapezoids to convex objects. Figure 3 shows an example vertical decomposition of a
single object and Figure 4 shows how the decomposition visualisation looks in ConvexMerger on a playfield with
some executed merges.

v1.3 7/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

1

2

3

4p1

p2 p3

p4

o1

t1

t2
t3

(a) Example of a vertical decomposition on a single convex
object.

p2

p3

2

outsidep4

p1

outside

3

outside

t1

4 4

outside t2

1

t3outside

(b) The search structure for o1 when the segments are in-
serted in the order 2, 3, 4, 1. Note how both 4s point to the
same “outside” trapezoid.

Figure 3: Example of a vertical decomposition for a single convex object. The outside trapezoids are not named
here.

Figure 4: The visualised vertical decomposition of a playfield.

If the RIC approach for vertical decomposition is followed, the vertical decomposition construction time is
expected to be O(m logm) [17]. Point location queries can be answered by going down the search structure
in O(logm) expected time. However, at the start of the project, the decomposition was static, which meant
that whenever a new segment was added to the decomposition, which is the case with merges, it would have to
be rebuilt. Rebuilding after every merge means that updates to the decomposition have the same O(m logm)
expected runtime as construction.

Here we will note that the RIC approach works under the assumption that there are no two points on the
same x-coordinate, which bounds the number of neighbours of each trapezoid to at most four. The assumption
can be lifted by defining a topological order on the points or by using the perturbation technique, that means to
slightly shift all points along the x-axis based on y-coordinate until no two points are on the same x-coordinate.
In ConvexMerger, the assumption is not used nor lifted, however occurrences where two points lie on the same
x-coordinate, with different y-coordinates, are rare. Having more than two points on the same x-coordinate
that are not separated by a segment is an even rarer occasion. Such cases are rare in practice, and no more
than a few have been spotted per playfield, thus they carry little impact to the runtime of the decomposition

v1.3 8/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

construction, queries, and updates.
The improvement to the vertical decomposition implemented in this project is to dynamize the structure.

Instead of rebuilding the whole decomposition upon merging objects s and t, only the merge segments m1 and
m2 are inserted into it. This creates new trapezoids and requires extra bookkeeping for all affected trapezoids.
After the new trapezoids are created, the trapezoids affected by a merge are all trapezoids within the resulting
convex hull, that is all trapezoids within s and t, and the area enclosed between s, t, m1, and m2. The extra
bookkeeping is in the link between trapezoids and the convex object they are part of. Whenever a merge between
two objects happens, the resulting convex object r is considered a new object, so the affected trapezoids must
be remapped towards r.
Another possible improvement that we did not implement as part of this project is to rebuild occasionally.
This would be done to maintain the balance of the decomposition search structure. Using the RIC approach,
the height of the search structure (a tree with internal nodes representing points and segments, and leaves
representing trapezoids) is expected to be O(logm) after construction. After each segment addition, parts of
the tree get deeper, which can disbalance the search structure and invalidate the O(logm) query time guarantee.
To rebalance the decomposition, it can be rebuilt after some number of updates. This number can either be fixed
or dynamic. For a static number of updates if the decomposition is rebuilt every logm merges, the O(logm)
expected height is maintained. Alternatively, a criterion for disbalance can be introduced, e.g. average or
maximum height difference between leaf nodes, and the decomposition can be rebuilt after a specific threshold
for disbalance is reached.

Analysis The beginning point of the analysis on the cost of updates is the addition of the inserted segment
si, which takes time linear in the total number of segments in the worst case, since there are O(m) trapezoids
total, each of which s could intersect. Then, the updates to the search structure happen in constant time for
each intersected trapezoid. Finally, during the update of the trapezoid-to-object mapping, no more than O(m)
trapezoids will be visited in the worst case, as each trapezoid is visited at most once.

The vertical decomposition is (re)built in O(m logm) time. Rebuilding every x merges takes an amortised
O(m logm

x) time per merge. Therefore, when x is chosen equal to m, the amortised rebuild time is O(logm).
Seeing as merge segment insertion takes linear time, rebuilds can happen more often, and rebuilding once every
logm updates would result in O(m) amortised time per update. Middle points between these values exist, such
as x =

√
m resulting in amortised O(

√
n log n) update times. The value of x should be chosen depending on

the expected query-to-update ratio.
The analysis above shows that the improvements to the vertical decomposition in this project reduce the

update time from O(m logm) to O(m), and shows an approach to ensure the balance of the search tree and the
O(log n) query time at the expense of updates with O(m) amortised runtime.

3.3 Efficient Segment Intersection Testing

Segment intersection testing in ConvexMerger is used whenever a merge is attempted to check whether the
merge lines between the source and target object intersect the segments of other objects. This is used both for
human and AI players. In fact, each AI makes a multitude of such checks per turn before choosing their move.

Trivial segment intersection testing, by checking whether the query segment intersects each segment on the
playfield, takes O(m) time. To improve upon this, we implemented two segment partition trees, as presented
by Overmans et al. [15]. One is based on kd-trees [3], and the other is based on conjugation trees [8]. It was
not necessary to implement both, however we first implemented the kd-tree as a simpler proof of concept.

Conjugation trees Conjugation trees partition their set of points based on a bisector and its conjugate. A
bisector is a line (or segment) that splits a set of points into two equal-sized sets, possibly containing some of
the points on itself. A conjugate of a bisector is a line that intersects the bisector and is a bisector of both of
the equal-sized split point sets. For any given bisector, a conjugate always exists[24].

The construction of the conjugation segment partition tree happens in two parts. First, for the root node r
we partition the complete point set into pl and pr of equal size using a vertical bisector b. Afterwards, for the
child nodes we partition respectively pl and pr using the conjugate cb of the parent’s bisector b. For each child
node chld, the conjugation tree is recursively built with chld as its root node and cb as its bisector. Figure 5
depicts the bisectors of a possible conjugation tree on a set of 16 points.

Kd-trees The construction of the kd segment partition tree is done analogously to the conjugation segment
partition tree, with a single difference. Instead of conjugates, the partition alternates between vertical and
horizontal bisectors, which are lines that go through the median point(s) in the horizontal (resp. vertical) order
of the point (sub)sets. For each visited node v, the points are sorted on the on the x-axis if v is an even distance
from the root, otherwise on the y-axis. Then, the median point mv is picked, and a line perpendicular to the

v1.3 9/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

1 1

2

1

2

3

3

1

2

3

3

4

4

4

4

1

2

3

3

4

4

4

4

5

Figure 5: Level-by-level conjugation tree construction on 16 points. The bisectors are depicted in cyan, and
the number next to each bisector represents the level of its node. The first bisector is vertical, and every next
bisector is a conjugate of its predecessor.

sort axis is run through mv, bisecting the point set. Afterwards the algorithm recursively executes on a pair of
child vertices, containing one of the split subsets each. Figure 6 depicts the bisectors of a possible kd-tree on
the same set of 16 points as in Figure 5.

The addition of segments to the two types of trees happens the same way. After the partition trees are
constructed, we then insert the segments one by one into the constructed tree, beginning with a visit to the root
node. For each visited node v, if the segment to be inserted s fully intersects the area of v, meaning s intersects
v’s area but has no endpoints inside it, or if v is a leaf node, we store the segment at that node. Otherwise, we
check whether s intersects the bisector of v, and if so, we visit both children of v. Otherwise only the child that
is partially intersected by the segment is visited. Later updates to the playfield that result in the addition of
segments also use this insertion approach.

Intersection testing queries are handled the same way for kd and conjugation trees, starting at the root
node. For every visited node v, the query segment s is checked for intersection against all segments stored in v.
If s fully intersects v’s area or if s intersects the bisector of v (clipped inside the area of v), both of v’s children
are visited. Otherwise, only the child that is partially intersected by s is visited. If at any point v intersects a
segment stored at a visited node, the search concludes.

Analysis The construction of kd-trees follows the standard algorithm [3]. Sorting the points takes O(n log n)
time at each depth level (as there are k = 2i nodes of n

k points each). After sorting, the remainder of the work

at each node takes constant time, so the total construction time is O(n log n · log n) = O(n log2 n). Here we can
note that the addition of the segments at the nodes takes O(log n) time per segment, for a total of O(m log n)
time, however since in ConvexMerger m = O(n), this does not impact the asymptotic bound. We can also
note that with extra bookkeeping the points can be sorted only twice, once for each axis and filtered in linear
time instead of O(n log n), which would reduce the running time by a factor of O(log n). This was omitted in
ConvexMerger in order to simplify the complexity of the code.
Similarly, the construction of conjugation trees takes O(n log2 n), as at the root level a vertical bisector is

v1.3 10/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

1 1

2

2

1

2

2

3

3

3

3

1

2

2

3

3

3

3

4 4

4
4

4

4

4 4

1

2

2

3

3

3

3

4 4

4
4

4

4

4 4

5

Figure 6: Level-by-level kd-tree construction on 16 points. The bisectors are depicted in cyan, and the number
next to each bisector represents the level of its node. The first bisector is vertical, and every next level of
bisectors alternates between horizontal and vertical.

computed in O(n log n) time analogously to the kd-tree, and at each internal node a conjugate on n points
is computed in O(n log n) operations (see Section 3.4.1). Similar to kd-trees, we take O(n log n) time at each
depth, leading to the aforementioned O(n log2 n) construction time.

For kd-trees, segment intersection queries on m segments between n points can take O(n ·m) = O(n2) time
in the worst case. The case would be when a lot of segments are all linked to one point. A depiction of how
this would look like for convex objects and their merges is depicted in Figure 7.

As can be seen on the top-right of the figure, when all objects are merged in a specific sequence, some node
in the kd-tree will store one segment per object. In fact, more than just that node will store these segments.
If the sequence of objects is generated at a particularly small angle, the merge segments would be stored in
O(n) cells. For a query segment that intersects all of these cells, such as a hypothetical merge segment of the
next object following the example structure, this leads to to the aforementioned O(n2) runtime. Such a case is
extremely unlikely in ConvexMerger, where on average each node only contains a small number of segments, as
will be shown in Section 4.3. This puts a lower bound on the worst-case within ConvexMerger at Ω(n), however
we were unable to prove an upper bound tighter than O(n2).

The runtime analysis of segment intersection queries for conjugation trees is based on Edelsbrunner and
Welzl’s discovery that the worst-case recurrence for queries on conjugation trees can be bounded using its
similarity to the fibonacci sequence [8]. They found that in the worst case, for a set of points split by a bisector
and its conjugate, any straight segment will intersect at most 3 out of the 4 divided areas of the plane. This is
because from any point not on the lines, to enter another area would require intersecting one of the conjugates,
and two straight lines can only intersect at most once, see Figure 8 as an illustrative example. The runtime
T (n) of a segment intersection query for some segment on a set of n points is then the recurrence:

T (n) = T (12n) + T (14n) + x

Here x is the time spent at each node. Edelsbrunner and Welzl prove that for x = O(logm), intersection testing

v1.3 11/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Figure 7: Sketch of worst-case scenario for kd-trees. If the bottom object is consecutively merged with all other
objects from left to right, the kd-tree cell coloured in red just above the original bottom object will store a
segment for every merge, meaning a segment for every object other than the bottom-most one.

using conjugation trees runs in O(nlog2 ϕ) = O(n0.695), where ϕ = 1
2 (1 +

√
5) is the golden ratio. As can be

seen in Section 4.3, in ConvexMerger the number of segments stored at a node averages at fewer than 2 for
m > 2000. This is well within the O(logm) bound, so even when testing the query segment for intersection
with all stored segments in visited nodes, the proof holds and the O(n0.695) bound applies.

Figure 8: Example of two conjugate bisectors on a set of 8 points. Note how the red segments can not go
through 4 of the areas divided by the bisectors.

3.4 Miscellaneous Algorithms

In this section we will describe some minor helper algorithms that are interesting to cover, but not necessarily
very complicated.

3.4.1 Conjugate computation

For the implementation of conjugation trees, a key component is the computation of the bisectors and their
conjugates that partition the tree. For a set of n points, a bisector b is a line that separates the point set into
a left subset pl and right subset pr of equal size (or off by 1). A conjugate of the bisector is then a line cb that
is a bisector of both pl and pr simultaneously.

Literature on the topic states that a conjugate always exists [24], and that an O(n) algorithm is possible[24],
however we found the algorithm complex to comprehend and implement. As such, we first implemented a naive
approach and later came up with an alternate solution that compromises between speed and simplicity.

The naive solution to conjugate computation iterates over all pairs of points of the form (x, y) where x is a
point in pl and y is a point in pr. It then considers the line passing through the pair of points as a candidate
conjugate ccand. For ccand the number of points on each side of it is computed, separately for pl and for pr. If
the number of points on each side differs by at most one for both subsets, ccand is returned as the answer.

v1.3 12/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

The naive solution proved to be the bottleneck of the algorithm, taking up to tens of seconds to generate the
conjugation tree on playfields with the highest population settings. To remedy this, we propose an alternative
algorithm. The basis for the algorithm is the observation that in the general case, the computed conjugates
pass through points that are either the median points of pl and pr when sorted on the projection of the points
onto the bisector b, or that the points were very close to being median in their respective subset.

The algorithm starts by sorting pl and pr on the projection of each point along b. Then, the median points
ml and mr of the subsets are selected and the line passing through them them is chosen as the first candidate
conjugate ccand. Afterwards, pr is sorted radially with relation to ml, and pl is sorted radially with relation
to ml. If ml and mr are still the median points of respectively pl and pr, then ccand is indeed a conjugate of
b. Otherwise, select a new ccand passing through one of ml or mr and the current median of the opposite set,
respectively the median of pr or pl. The process continues until a conjugate is found.

One issue that was discovered was that in some cases of collinearity, the choice of candidates would loop.
To tackle this, whenever ccand has already been chosen before, a new candidate is sought, starting with points
that are adjacent in index to the current candidate points in the sorted subsets and searching for more distant
points until a yet unchosen candidate conjugate is found.

The naive implementation has an asymptotic runtime of O(n3). This comes from checking |pl| · |pr| = O(n2)
pairs of points as defining points of candidate conjugates, with each candidate taking O(n) to iterate the subsets.
The proposed algorithm first sorts pl and pr inO(n log n), and then takesO(n log n) time per candidate conjugate
to sort the two subsets again. In the worst case, when all points are collinear, this would take O(n3 log n) time
total, as all pairs of points may be checked, depending on the initial order. A way to solve this case that we
did not implement is to add a third dimension to all points and assign values to each point in that dimension
that would define a topological order in case all points are collinear in 2D. This would reduce the worst-case to
O(n log n) as only a constant number of candidates will be considered.

1

2

7

1

ml (4)3

5

2 3

mr (4)

5
6

87
6

(a) Initial state, including the bisector and the perpendic-
ular segment of each point to the bisector. The segments
on each side are numbered in order from top-left to bottom-
right.

1

7

ml

6 5

2

4
3
+
-

(b) First candidate conjugate, passing through the median
point on each side. The points to the top-right are sorted
w.r.t. the angle that the segment from ml to the point
makes with the green line.

1

2
3

4

5

mr

87
6

-
+

(c) Last candidate conjugate, passing through the old ml

the median point on the top-right. The points on the
bottom-left are sorted on their angle to mr.

1

2

1

7

3

ml(4)

5

6 5

2

mr(4) 3

87
6

+ -

-
+

(d) Last candidate conjugate, passing through the old ml

the median point on the top-right. The points on each side
are sorted on their angle to ml or mr. Since both points the
line passes through are medians, the candidate is indeed a
conjugate.

Figure 9: Conjugate computation on a set of 15 points and an existing bisector.

In our observation of the proposed algorithm’s implementation in ConvexMerger we found that typically
at most three candidates are considered before the algorithm converges, which confirms the average O(n log n)
runtime. While the proposed algorithm does not match the best achieved theoretical running time bound of
O(n), it is easy to implement and it is intuitive. An example showing the computation of a conjugate with this

v1.3 13/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

algorithm is shown in Figure 9.

3.4.2 Line extension and clipping

In order to visualise how the playfield space is divided by conjugation trees, there is a need to resize the
partitioning segments to the bounds of the cell that they split. These operations are not necessary for kd-trees,
as all partitioning line segments are orthogonal to the axes and each cell is a rectangle.

Before delving into line extension and clipping, it is important to note that the underlying data representation
mentioned in Section 3.4.1 is not actually a line, but a line segment between points, as that is sufficient for
finding out through which points the conjugate passes.

Extension to the ends of the playfield In order to obtain the final conjugate line within the bounds
of the playfield from the chosen candidate segment, first the slope s and the intercept b at the zero x-
value are computed from the segment. Then, the x-coordinate of the two points p1 is computed as x1 =
min(playfield width,max(0, −b

s)) and x2 = min(playfield width,max(0, playfield width−b
s). The minimum and

maximum operations are included to ensure that the x-coordinates are within the bounds of the playfield. The
y-coordinates are then computed as y1 = b + s · x1 and y2 = b + s · x2. The line segment ((x1, y1), (x2, y2)) is
then guaranteed to end at the boundaries of the playfield due to the way that the x-coordinates were computed.

Clipping to the area of a node A conjugation tree node’s area is bound by the playfield bounding box
and by the bisectors of the node and a (non-strict, possibly empty) subset of its ancestors. For the node and
each of its ancestors in order, the line to be clipped l is tested for intersection with each of the bisectors bi. If l
intersects with a bi at point p, l is limited to p in the direction that heads past the bound of the node’s area.
When all ancestors are visited, the line will be clipped down to the node’s area.

3.4.3 Hull splitting

The conjugation trees presented in Section 3.3 partition the playfield on each side of multiple segments. One
way to look at the playfield is as the convex hull of four points that form a rectangle. Each bisector of the
partition tree splits the hull into smaller hulls that cover the same area. Hull splitting takes a hull ho and a
splitting line l, and splits ho into two hulls hl and hr that cover the exact same area as ho such that the points
of hl are on one side of l or on l and the points of hr are on the other side of hr or on l. Hull splitting is used
to efficiently maintain the areas that the playfield is split into by the conjugation trees. The resulting hulls are
used in the visualisations in Section 5.2 and for the segment intersection testing in-game animations.

The hull splitting algorithm first iterates through the points of the original hull ho until a point pi is found
that is on a different side of the splitting line than the previous visited point pi−1. This indicates that there
is an intersection at a point i1 between l and the segment (pi−1, pi). Since it is on both hulls, i1 is added to
both hl and hr. Then, iteration continues until again a point pj is found on a different side of l compared to
pj−1. This indicates that l intersects (pj−1, pj) at i2. All points from pi up to but excluding pj are added to
hr in order of iteration. Then, i2 is added to both hl and hr. Finally, the remaining points, from pj up to and
including the final point on the hull are added to hl, followed by all points from the first point on the hull up
to but excluding pi. In the edge case that the splitting line intersects the hull at a single point (or not at all),
the algorithm immediately outputs a zero-area shape and ho. A picture of how a hull is split in two by a line
can be seen in Figure 10.

l

p1

p2

p3

p4

p5

(a) The original hull ho and the splitting line l

l

p1

p2

p3

p4

p5

i1

i2hl

hr

(b) ho split into hl and hr.

Figure 10: Hull splitting example on a hull with 5 points.

As can be seen from the description, the algorithm features at most two passes of all n points on the hull of ho.
Therefore, the running time of this algorithm is Θ(n).

v1.3 14/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

3.4.4 Helper line computation

Whenever a player clicks on an object they own, two helper lines project from the clicked object towards the
cursor and move along with it. The helper lines are useful for players to more easily estimate whether a merge
is possible by moving the cursor around. A picture of how this looks in-game can be seen in Figure 11.

Figure 11: In game view of the helper lines.

The lines are computed by simulating a merge between the selected object obj and the point p at which the
cursor is located, using a modified version of the caliper approach described in Section 3.1. The helper lines
are exactly the merge lines between obj and p. The rotation of a caliper c is simulated, starting from a vertical
position at the leftmost point of obj and rotating around obj by iterating its points in order. We keep track
whether the orientation of p changes with respect to c as c rotates. Again, as with the convex object merging
approach, the two merge lines are found exactly whenever the orientation changes (see Figure 2). Since the
goal is to find the merge lines, this algorithm can stop as soon as the second merge line is found instead of
completing the rotation.

v1.3 15/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

4 Evaluation

In this section we will evaluate the performance and characteristics of the data structures we have implemented.
The goal of this section is twofold, the first goal is to explore interesting questions that arose during development,
and the second goal is to justify some assumptions that were made in the rest of this report.

4.1 Construction Characteristics of Partition Trees

Although the primary goal of this section is to explore if there are any notable differences between kd-trees
and conjugation trees, the vertical decomposition also fits the definition of a partition tree. As such, it is
theoretically possible to make a segment partition tree that is based on a vertical decomposition. Therefore, the
vertical decomposition will also be included in the analyses in this section. For the evaluations in this section
we will make use of six datasets, each containing 100 playfields representative of possible games. For each of
these datasets the playfield density and spacing are set to medium while the object size is varied from small
to large. We used seeds with custom object sizes to generate the playfields between the in game medium and
large setting. Note that the size of objects is inversely correlated with the number of objects that can be placed
on a playfield. Some statistics for the average sizes of these datasets are shown in Table 1 and the datasets
themselves are available in Appendices A.1, A.2, A.3, A.4, A.5 and A.6.

Dataset Objects Points Segments

Large 18.41 73.64 92.05
Medium 45.34 176.41 221.75
20-40 115.07 460.28 575.35
15-30 206.11 824.44 1030.55
10-25 347.59 1390.36 1737.95
Small 474.53 1898.12 2372.65

Table 1: Average sizes of the playfields in the datasets

Figure 12a shows the data structure construction time increasing when the number of objects increases. Judging
from the plots all data structures have similar runtime scaling, which for all should be O(n log n) (n being either
points or segments), the plots appear to be in line with this runtime. The average depth of a leaf node for each
of the structures is shown in 12b. Here we see that kd-trees and conjugation trees have an average depth that
corresponds almost exactly with the optimal height of these structures, which is log(n). Notably, conjugation
trees are slightly deeper, presumably due to the fact that the point set does not always need to be split in two
parts of exactly equal size. However, the vertical decomposition seems to be deeper than expected, this issue is
explored further in Section 4.4.

0 100 200 300 400 500
105

106

107

Objects

T
im

e
(n
s)

Datastructure Construction Time

Decomp
kd-Tree

Conjugation

(a) Construction time by object count.

0 100 200 300 400 500
0

10

20

30

40

50

Objects

D
ep
th

Average Leaf Depth

Decomp
kd-Tree

Conjugation

(b) Average leaf node depth by object count.

Figure 12: Datastructure construction scaling statistics.

v1.3 16/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

4.2 Average depth of segments in Segment Partition Trees

One core feature of segment partition trees is that segments can be stored at higher levels in the tree when
they fully intersect a cell of the induced partitioning. This feature means that a query potentially has no need
to travel all the way to a leaf node to determine if an intersection exists. While this feature is not very useful
with regard to human players, who presumably make mostly valid moves without intersections and thus always
cause the search to hit leaf nodes. For AI players this is different, as they require the segment partition tree to
determine if a move is legal. As such it is interesting to investigate where segments are stored in our segment
partition tree implementation. Moreover, it will be interesting to see if there are any major differences between
kd-tree and conjugation tree based segment partition trees. For this investigation we make use of 100 games
and record the average number of segments stored at each level of the segment partition tree before and after
the games. The games will be played by two greedy AIs (Isla) and the game seeds are available in Appendix
A.7.

2 4 6 8 10 12 14 16 18 20 22 24

10−2

10−1

100

101

102

103

104

Depth

A
ve
ra
g
e
T
ot
a
l
S
eg
m
en
ts

Total segments by depth

KD-Tree (Post)
KD-Tree

Conjugation (Post)
Conjugation

2 4 6 8 10 12 14 16 18 20 22 24

0

1,000

2,000

3,000

Figure 13: Distribution of stored segments across the layers of KD-tree and conjugation tree based segment
partition trees before and after a game, based on the dataset in Appendix A.7.

Figure 13 shows the average number of segments stored at each level before and after the mentioned games,
post game averages are marked with ‘Post’. Due to the large variation in where segments are stored a log scale
is used for the main figure. However, to provide a better view of the distribution a miniature plot without
log scaling is provided in the top right corner. From this figure it becomes clear that kd-tree based segment
partition trees store nearly all segments at leaf nodes. Conjugation tree based segment partition trees on the
other hand appear to store segments in a normal distribution around the average leaf depth. We currently do
not have a good explanation for this difference, so this might be interesting to further investigate in the future.
Finally, it is worth noting that during a game more segments get added to higher levels of the tree. This is an
expected result as good merges are as large as possible and thus naturally have longer merge lines. These long
merge lines then have a higher chance of fully interesting a high cell in the induced partitioning, allowing it to
be stored higher.

4.3 Segments per node in Segment Partition Trees

One core assumption on which we based our runtime analysis for segment partition trees in Section 3.3, is that
a relatively small number of segments will be stored at any given node in the segment partition tree. To validate
this assumption we have computed the average number of segments stored at each depth level of the segment
partition tree across 100 games. In order to get an idea of how this number changes over the course of a game
we let each game be played to completion by two greedy AIs (Isla) and the game seeds are available in Appendix
A.7. The results of this experiment can be seen in Figure 14, the post-game results are marked with ‘Post’.

v1.3 17/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

2 4 6 8 10 12 14 16 18 20 22 24

0

0.5

1

1.5

2

Depth

A
ve
ra
ge

S
eg
m
en
ts

Average segments per node by depth

KD-Tree (Post)
KD-Tree

Conjugation (Post)
Conjugation

Figure 14: The average number of segments stored at each layer of KD-tree and conjugation tree based segment
partition trees before and after a game, based on the dataset in Appendix A.7.

It is clear from these results that our assumption is valid, with the average number of segments per node rarely
reaching 2. Furthermore, there are no major outliers. On average, before the game the maximum number of
segments stored in a single cell was 5.26 for kd-tree based segment partition trees and 3.7 for conjugation tree
based segment partition trees. After the games were played this changed to 8.55 for kd-tree based segment
partition trees and 6.59 for conjugation tree based segment partition trees. Although these numbers are larger
than the averages, they are not indicative of any major outlier issues and also do not invalidate our assumption
for the runtime analysis. Notable is that the for both kd-tree and conjugation tree based segment partition trees
a comparatively large number of segments is added to the higher levels of the tree during a game. This can be
explained by the fact that primarily long line segments get added during a game. Since the goal of the game
involves finding the largest merges possible, the added merge lines are also generally longer than the segments
that make up the initial set of convex objects. As a result these segments are more likely to fully intersect the
larger higher level cells of the segment partition tree, which is required for them to get stored at these levels.
Finally, as already noted during the analysis of where segments get stored, using kd-trees results in a relatively
high number of segments being stored at the leaf nodes. Consequently, the average number of segments stored
at the leaf nodes for a kd-tree based segment partition tree is also relatively high.

4.4 Trapezoid depth in the Vertical Decomposition

As mentioned in Section 3.2 our implementation of the vertical decomposition does not re-balance itself during
the game. As such, it is interesting to investigate if it would be worthwhile to implement techniques to keep
the search structure more balanced (e.g., rebuilding when the structure becomes too unbalanced). For our
investigation we observed 100 games and measured the average depth of all trapezoids before and after each
game. The games were played by two greedy AIs (Isla) and the game seeds are available in Appendix A.8. Since
the search structure for the vertical decomposition is a DAG there could be more than one path from the root
to a trapezoid, we always use the longest path to compute the depth. Table 2 shows the average total number
of trapezoids and the average depth of an individual trapezoid before and after the games. Figure 15 shows
how the trapezoids are distributed depth wise through the vertical decomposition before and after the games.

State Total Trapezoids Average Depth

Pre-game 3607.04 44.61
Post-game 4152.20 48.08

Table 2: Average vertical decomposition statistics before and after the games.

v1.3 18/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

38 40 42 44 46 48 50 52 54 56 58 60 62

0

200

400

600

Depth

A
ve
ra
g
e
T
o
ta
l
T
ra
p
ez
o
id
s

Average trapezoids by depth

Pre-game
Post-game

Figure 15: Maximum depth of vertical decomposition trapezoids before and after a game, data is averaged
across the 100 games in Appendix A.8.

From these results we can surmise that the average depth of trapezoids in the search structure increases by
approximately 3.47. However, considering that most trapezoids were already stored at a depth of 38 or deeper,
this is not a very significant increase. Moreover, the merges that take place during a game naturally make
the number of trapezoids grow, meaning at least some increase in search structure size is expected. Thus, we
do not believe that there is much value in re-balancing the vertical decomposition during a game. However,
the vertical decomposition does seem to be deeper than one would expect. Given that log(4200) ≈ 12, the
search structure’s depth of O(log(m)) has a constant factor significantly above 3. This is partially attributed
to the depth increasing by at most 3 per insertion, as is the case when an inserted segment lies entirely within
a trapezoid. Another commonly seen case is when one segment endpoint is in one trapezoid and the other is in
another trapezoid, which adds the newly created trapezoids at a depth of 2 deeper than the previously existing
ones. One of these cases occurs at almost every segment addition, which would explain the constant factor being
between 2 and 3. The constant factor being above that can be attributed to a poor ordering of the segment
additions during initialisation that in turn leads to an imbalanced search structure. Consequently, an improved
initialisation approach, such as true random initialisation2, might be more beneficial to look into.

5 Visualisations

In this section we will discuss some of the data structure visualisations and animations that were implemented
in the game. Generally, these visualisations are implemented as overlays on top of the normal playfield that
can be toggled on or off with a keybind. For users an overview of all these keybinds is available on the ‘Info’
tab, which can be accessed from either the main menu or the bottom right corner during a game. It is also
possible to enable multiple overlays at the same time, with the names of active overlays being displayed along
the bottom edge of the playfield. However, since we do not precompute or cache a lot of geometry for these data
structures game rendering performance can suffer substantially, especially when enabling a lot of visualisations
or when the playfield has a lot of objects. Moreover, some combinations of overlays are too chaotic to read
properly. Next follows a quick overview of all implemented visualisations and their keybinds.

1) ctrl + C Shows the centroids of the convex objects. This visualisation is not particularly interesting, so
we will not dedicate a section to it. However, centroids play an important role in playfield generation and
the object claim animation.

2) ctrl + D Shows the vertical decomposition, further discussed in Section 5.1.

3) ctrl + S Shows the conjugation tree based segment partition tree, further discussed in Section 5.2.

4) ctrl + K Shows the kd-tree based segment partition tree, further discussed in Section 5.2.

5) ctrl + M Enables the merge calliper animation for merges, further discussed in Section 5.3.
2Note that we currently add objects in a random order, which are essentially sets of segments closely located together.

v1.3 19/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

5.1 Vertical Decomposition

The visualisation of the vertical decomposition can be toggled on or off by pressing ctrl + D . When shown
the bounding box and the vertical lines that make up the vertical decomposition are rendered in cyan and all
segments that were ever added to the decomposition are drawn in black. Incidentally, because segments are
never deleted from the vertical decomposition, it is possible to see how large objects were created via merges
from the original playfield objects. Adding segments to the vertical decomposition is done with a slight delay
when the visualisation is active to make it slightly easier to see the effect of an individual insertion. However,
this feature is primarily used to animate the vertical decomposition being built from scratch. On the new game
menu it is possible to toggle the vertical decomposition animation using ctrl + D . When a game is started with
the visualisation active the user can then see the vertical decomposition being built segment by segment in real
time. An example of a vertical decomposition visualisation is shown in Figure 16.

Figure 16: In game visualisation of the vertical decomposition.

5.2 Segment Partition Tree

Since the game includes two implementations of a segment partition tree there are also two visualisations. The
visualisation of a kd-tree based segment partition tree can be shown by pressing ctrl + K and the visualisation
of a conjugation tree based segment partition tree can be shown by pressing ctrl + S . Functionally, both
visualisations work the same. For the underlying base partition tree the points from the point set that the
partition tree was built from are shown in blue, the structure of the partition tree itself is shown in cyan with
the dividing lines of deeper tree cells using a darker shade of cyan. The segments contained in the segment
partition tree are drawn in black. Similar to the vertical decomposition visualisation, this means it is possible
to see how larger convex objects were constructed. A segment partition tree visualisation based on a kd-tree is
shown in Figure 17 and a segment partition tree based on conjugation trees is shown is show in Figure 18.

When a segment partition tree visualisation is active it will animate queries that are executed. However,
due to technical challenges and usability concerns only queries that result in a segment being added to the tree
are animated. Consequently, this means that no visualised queries ever find an intersection. However, this also
means that the animation always continues all the way to the leaf nodes of the tree, clearly showing which
cells are checked. The animation itself works as follows. The query segment is shown in blue at all times. The
animation then shows in sequence which cells are searched at each level of the tree from root to leaves, with a
slight delay before continuing to the next tree level. At each level all the cells being checked are shaded red,
any segments checked for intersection in these cells also light up in red. It is worth noting that the animation
can be cancelled at any time by simply disabling the visualisation overlay.

v1.3 20/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Figure 17: In game visualisation of a kd-tree based segment partition tree.

Figure 18: In game visualisation of a conjugation tree based segment partition tree.

v1.3 21/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

5.3 Merge Callipers

The visualisation to animate merge callipers can be toggled using ctrl + M . When active, this visualisation
shows the merge callipers rotating around the objects involved in a merge in red. Any found merge lines are
shown in blue as soon as they are encountered. Four figures showing successive snapshots of the animation can
be seen in Figure 19.

(a) Start of the animation. (b) Just after finding the first merge line.

(c) Midway point of the animation. (d) Just after finding the second merge line.

Figure 19: In game animation of the callipers used to find merge lines.

6 Concluding Remarks

In this work we have presented several algorithmic improvements to various aspects of ConvexMerger and their
visualisations. The improvements concern vital elements of the game, namely point location, used for user
clicks, convex object merging, which is the core game mechanic, and segment intersection testing, which is key
in testing whether a convex object merge is possible. For each game element, we mentioned the base approach
used at the start of this project, explained what the new algorithms are and how they improve upon the basis.
The most notable improvements are to convex object merging, with the caliper approach running in time linear
to the number of points on the two merged objects, and segment intersection testing, with segment intersection
query times sub-linear to the number of segments.

Whilst the improvements to the running times of the various query types are significant, there is still room
for improvement. Namely, point location, handled by the dynamic trapezoidal decomposition, can be further
improved by inserting the segments in a truly randomised fashion. Another point of improvement would be
the computation of conjugates. A more efficient approach is already known [14], yet it was not incorporated in
favour of a custom approach that was simpler to implement.

References

[1] Tetsuo Asano. “An efficient algorithm for finding the visibility polygon for a polygonal region with holes”.
In: IEICE TRANSACTIONS (1976-1990) 68.9 (1985), pp. 557–559.

[2] N Baumgarten, Hermann Jung, and Kurt Mehlhorn. “Dynamic point location in general subdivisions”.
In: Journal of Algorithms 17.3 (1994), pp. 342–380.

v1.3 22/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

[3] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”. In: Commun.
ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi: 10.1145/361002.361007. url: https://do
i.org/10.1145/361002.361007.

[4] Timothy M Chan. “Optimal output-sensitive convex hull algorithms in two and three dimensions”. In:
Discrete & Computational Geometry 16.4 (1996), pp. 361–368.

[5] Timothy M. Chan and Yakov Nekrich. “Towards an Optimal Method for Dynamic Planar Point Location”.
In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. 2015, pp. 390–409. doi:
10.1109/FOCS.2015.31.

[6] Yi-Jen Chiang, Franco P. Preparata, and Roberto Tamassia. “A Unified Approach to Dynamic Point
Location, Ray shooting, and Shortest Paths in Planar Maps”. In: SIAM Journal on Computing 25.1
(1996), pp. 207–233. doi: 10.1137/S0097539792224516. url: https://doi.org/10.1137/S0097539792
224516.

[7] Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. “Optimal point location in a monotone sub-
division”. In: SIAM Journal on Computing 15.2 (1986), pp. 317–340.

[8] Herbert Edelsbrunner and Emo Welzl. “Halfplanar range search in linear space and O (n0. 695) query
time”. In: Information processing letters 23.5 (1986), pp. 289–293.

[9] Alain Fournier and Delfin Y Montuno. “Triangulating simple polygons and equivalent problems”. In: ACM
Transactions on Graphics (TOG) 3.2 (1984), pp. 153–174.

[10] Michael T Goodrich and Roberto Tamassia. “Dynamic trees and dynamic point location”. In: SIAM
Journal on Computing 28.2 (1998), pp. 612–636.

[11] Ronald L. Graham. “An efficient algorithm for determining the convex hull of a finite planar set”. In:
Info. Proc. Lett. 1 (1972), pp. 132–133.

[12] Ray A Jarvis. “On the identification of the convex hull of a finite set of points in the plane”. In: Information
processing letters 2.1 (1973), pp. 18–21.

[13] DT Lee. “Shading of regions on vector display devises”. In: Proceedings of the 8th annual conference on
Computer graphics and interactive techniques. 1981, pp. 37–44.

[14] Nimrod Megiddo. “Partitioning with two lines in the plane”. In: Journal of Algorithms 6.3 (1985), pp. 430–
433.

[15] Mark H Overmars, Haijo Schipper, and Micha Sharir. “Storing line segments in partition trees”. In: BIT
Numerical Mathematics 30.3 (1990), pp. 385–403.

[16] Haijo Schipper and Mark H Overmars. “Dynamic partition trees”. In: SWAT 90: 2nd Scandinavian Work-
shop on Algorithm Theory Bergen, Sweden, July 11–14, 1990 Proceedings. Springer. 2005, pp. 404–417.

[17] Raimund Seidel. “A simple and fast incremental randomized algorithm for computing trapezoidal decom-
positions and for triangulating polygons”. In: Computational Geometry 1.1 (1991), pp. 51–64.

[18] Michael Ian Shamos. Computational geometry. Yale University, 1978.

[19] Michael Ian Shamos and Dan Hoey. “Geometric intersection problems”. In: 17th Annual Symposium on
Foundations of Computer Science (sfcs 1976). IEEE. 1976, pp. 208–215.

[20] Subhash Suri and Joseph O’Rourke. “Worst-case optimal algorithms for constructing visibility polygons
with holes”. In: Proceedings of the second annual symposium on Computational geometry. 1986, pp. 14–23.

[21] Godfried T Toussaint. “A simple linear algorithm for intersecting convex polygons”. In: The visual com-
puter 1.2 (1985), pp. 118–123.

[22] Godfried T Toussaint. “Solving geometric problems with the rotating calipers”. In: Proc. IEEE Melecon.
Vol. 83. 83. 1983, A10.

[23] Wikipedia contributors. Gift wrapping algorithm — Wikipedia, The Free Encyclopedia. https://en.wi
kipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630. [Online; accessed
22-January-2022]. 2021.

[24] Dan E. Willard. “Polygon Retrieval”. In: SIAM Journal on Computing 11.1 (1982), pp. 149–165. doi:
10.1137/0211012. eprint: https://doi.org/10.1137/0211012. url: https://doi.org/10.1137/0211
012.

A Datasets

This appendix lists the game seeds that were used to generate the datasets used for the evaluation in Section 4.

v1.3 23/27

https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/FOCS.2015.31
https://doi.org/10.1137/S0097539792224516
https://doi.org/10.1137/S0097539792224516
https://doi.org/10.1137/S0097539792224516
https://en.wikipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630
https://en.wikipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

A.1 Dataset (Large)

Seed playfield generation options: object size = large, density = medium, spacing = medium.

4C1KNW03AT11XIFYDMVQ 4C1KNW00FIRADDVBBSGS 4C1KNW00GL0Z4SQDZ4TR 4C1KNW0021SO8K23G3GK

4C1KNW012HQ0S5WDOJ66 4C1KNW002U3HDVC9951K 4C1KNW00T8QL1XWM74XW 4C1KNW03UJ0CWO2SMESN

4C1KNW00DPCDV3CBS6Y9 4C1KNW00OI6JN93MT8MD 4C1KNW02G5RFG0WT677M 4C1KNW02EGC7XQS0HHCG

4C1KNW00LX36O9QY8XMM 4C1KNW009NX75CY4UT59 4C1KNW00ZCGA93PFIF8A 4C1KNW0382CMVEOU8N08

4C1KNW02JOO4MG6SQ0G5 4C1KNW03M87HTF734OCV 4C1KNW01T46JD3UQT7HJ 4C1KNW02FCTWGPRUD4YH

4C1KNW00YVWD36ZONYR7 4C1KNW00J1P9448U4O8W 4C1KNW023PL6FC7KB2AD 4C1KNW03KZ8PECLPF0YG

4C1KNW02R9XQKQ78O57D 4C1KNW00K8KY014RQPYZ 4C1KNW0214CPPU4IA0CJ 4C1KNW03GQ4HW801OIPD

4C1KNW0071SXVVV0LFR4 4C1KNW005BY5YYUO21D6 4C1KNW0087FVHQ7A76S8 4C1KNW00OFG9R2ID5XDO

4C1KNW00VKLBRRPHNYHK 4C1KNW0283PLATHZWNUM 4C1KNW00E2NKKEB1RQSC 4C1KNW00DUSDUZ4ZF2RE

4C1KNW03DP00I0RCHBBI 4C1KNW009X7TLZK0724D 4C1KNW0202OVVR0LX9BN 4C1KNW03TW8RRFW8IY5E

4C1KNW007Y0ZO30UTGE6 4C1KNW015DPR8IE8P7D8 4C1KNW001L7EF3EPMDI6 4C1KNW00FHKHX2N5BJIU

4C1KNW02XRJBR7RX0ZSQ 4C1KNW03DZAKWC9YX3PD 4C1KNW00SNYM8ZB6357R 4C1KNW01P2NJ4M145UM2

4C1KNW02ZUW85CYERN4V 4C1KNW00ZYALE8FZIFNY 4C1KNW00K2HLV56F8K9V 4C1KNW004BB7VRYF5EIL

4C1KNW02FS9AYHAFE9RG 4C1KNW03SGW04XTIP34E 4C1KNW00NBMLOPXUQWQD 4C1KNW021E1YAMM6S1RT

4C1KNW033FUSPKNR0C1N 4C1KNW029W79ZFCYDY7A 4C1KNW004ESJCRJIA2BK 4C1KNW02REY66IXXTA7S

4C1KNW009WAE5GBCYGBW 4C1KNW02ORGXUKOUG4BI 4C1KNW022JXR2IXOICCJ 4C1KNW011YXAR8XPL6IK

4C1KNW00C221IZH6L27V 4C1KNW00ASEJGDKKSFUP 4C1KNW01M6MOTDD44TEU 4C1KNW00GHLJZU34ZK7D

4C1KNW03IJR3MC903FZL 4C1KNW001J8ANI2C6ZMW 4C1KNW02532FTCH6S3OB 4C1KNW0358YDGE2FN0M0

4C1KNW03MO38RGOIFTWV 4C1KNW01WB6O5M8ZBBYS 4C1KNW032Y2D89VAR0D5 4C1KNW02LOAM32ENAZSA

4C1KNW0397B403EKS5CQ 4C1KNW01GPS7OMFJE6KP 4C1KNW01ZZ8GWIB7IEMM 4C1KNW00WV08MIUH2UU9

4C1KNW02G4131PLCK20H 4C1KNW034MQOUE9ZKR0B 4C1KNW0058UUPVGELYBK 4C1KNW03A5448J1ZQ1DR

4C1KNW03FTP8CPPPUH1G 4C1KNW00453BFWPFJW1K 4C1KNW020LSGJS8MJOL9 4C1KNW03OJ97QMLP0FSA

4C1KNW014MJUAEEKBVZ0 4C1KNW00JX3G54P0FMNY 4C1KNW03GBBEO500V8UY 4C1KNW03IMIK38DSSY4W

4C1KNW00UTU0HJLCMGIW 4C1KNW0144Y60SQQYHO4 4C1KNW02RR0T3ELYY7LU 4C1KNW00CSS76L6ZXOVF

4C1KNW03MRBO4RF75MGN 4C1KNW00K9ETLUZCAW9Z 4C1KNW00J72CW231XURO 4C1KNW02BFR8OGQG0ND8

A.2 Dataset (Medium)

Seed playfield generation options: object size = medium, density = medium, spacing = medium.

3Y64YR436S1HS4T4OGBQ 3Y64YR41AOBPFQJNGRBE 3Y64YR436JZS7M0RPXQ3 3Y64YR42JKTG22KJOEOH

3Y64YR4033GBPK0VQ3B5 3Y64YR4154COXBXL9ML5 3Y64YR40KNMO356FXN7C 3Y64YR41MU9JW85HRCVF

3Y64YR4015OOZI2601M3 3Y64YR4150Y93BYFEGVR 3Y64YR40UFR9L8Q0OXRD 3Y64YR43UIXDT7MFQCC7

3Y64YR43P7WTP3TVJ0A9 3Y64YR40PIH85W1EMH80 3Y64YR432NA383EDG0BF 3Y64YR43Q2LUXB07AFDB

3Y64YR42V0SVKGPH33BU 3Y64YR40UOLWZ4BKXYOE 3Y64YR40F4RTNARAH2RT 3Y64YR40UUCFQWTXZU0W

3Y64YR412Z1UMRBUBMGF 3Y64YR42Q7ZS723M8DRI 3Y64YR40DWPYVZNUZQK2 3Y64YR42E50U72FHBHV0

3Y64YR40SMUUY1JTDDSY 3Y64YR40X5AFA5KPV055 3Y64YR41TEMAU9HU46DS 3Y64YR43FNDSKUPYW71H

3Y64YR43EIFOIVIPMV8V 3Y64YR4203G1KRRAB2C3 3Y64YR430OD7NOOLEHVI 3Y64YR43OB5I17S42PEL

3Y64YR42V9BBEXAQWLXF 3Y64YR40U9Q7ASZ1VHTM 3Y64YR42J2THP48C2VY0 3Y64YR40KAID3MX3S3RY

3Y64YR415PQMEVZYDF8L 3Y64YR401RUCPT6C22ZJ 3Y64YR4029K6CAUKFCFS 3Y64YR4367WOU3ZLCV4L

3Y64YR42KQ2HWQUPET6H 3Y64YR427PW84WLHO8NN 3Y64YR431C4IP53KTYGL 3Y64YR40UMYVI188GZD8

3Y64YR40H642ERPWKK3T 3Y64YR407SY73OEU481Y 3Y64YR42UEKYMY4CY61J 3Y64YR42M9ZMN124WGK3

3Y64YR42YFF0NP7UMGUK 3Y64YR41B4MA5GUGOD1E 3Y64YR41NQ6CL3PER32B 3Y64YR42FSUEUK0YKYZF

3Y64YR40EBEEXZK4DK9O 3Y64YR40MGC60QEO12NY 3Y64YR42MLSY7ZONZRDX 3Y64YR43D3N9MBNDRABJ

3Y64YR42PPTGRGA3SR58 3Y64YR41XYGJPL5BWCGX 3Y64YR43VW02KZ0V722C 3Y64YR43VAG9QIGX6YWG

3Y64YR41LKSGAAOSCSXW 3Y64YR40ABWF4B5OELG8 3Y64YR43TMU4MSPMK4EN 3Y64YR43494BVUAZ1KDL

3Y64YR43UTLP6U6MUYZB 3Y64YR43IZ14PSTLZJYL 3Y64YR4357QHH2CVH1GA 3Y64YR42SQJJPI73GI6V

3Y64YR42NDPB2PA9PGBS 3Y64YR40Z98LWAR3KNR7 3Y64YR42T7L5KH95Q588 3Y64YR43TLZKC4OGM2QO

3Y64YR41S9ILOUQR5CEW 3Y64YR40ZJH09WHC11WL 3Y64YR41PL0890KU8YAK 3Y64YR40WJVCEDSV4ZDB

3Y64YR42Q158P02901OC 3Y64YR40KE0L6UDUKQIU 3Y64YR402Q6NW49TFVSF 3Y64YR43HSUSXQ6303RU

3Y64YR42ZZC5KTX02RCG 3Y64YR41N43YGRJ8ML3M 3Y64YR4148DMR643OIRH 3Y64YR43NE3Z9RYVMSFC

3Y64YR42DMMOSZ92FD3G 3Y64YR42R4IEC8PO2DJV 3Y64YR416FT67L66CMIJ 3Y64YR42XP4WRU4CLT9Y

3Y64YR405WDFH440EIMY 3Y64YR43G9J5DU45OVKS 3Y64YR42HB2XKMFNKHZA 3Y64YR41QIQDCLHZWKZK

3Y64YR40A7SUZH0Z73KF 3Y64YR42R4D9AKVZE7HV 3Y64YR42R8FP7DJM8X2E 3Y64YR43KPHDN62GJ4BN

3Y64YR4388VE4O9W4XEO 3Y64YR41L2UO0965ADLJ 3Y64YR41RWBWINMBXLKE 3Y64YR41STOR557D65F7

A.3 Dataset (20-40)

Seed playfield generation options: object size = 20 to 40, density = medium, spacing = medium.

v1.3 24/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

43NKKC02ZX3VI4Q84S6O 43NKKC01SEOYXG9YNKBT 43NKKC0311MT04T6YCE1 43NKKC02IZYN2TUF7QK0

43NKKC00BUENP8UIAXS3 43NKKC00W7ARSSPH4N8V 43NKKC007OJOMZPWGET9 43NKKC037YDDUVNWN3GO

43NKKC00Y9IWD4BI4SKA 43NKKC02Q7CG8CCLBR24 43NKKC03MTZ0QRP473DG 43NKKC00VSU3YTV5THEX

43NKKC032OGIS8QK2MO1 43NKKC00MNU4OPDAGWNB 43NKKC017JW7Y7FKMGCA 43NKKC032PIUIBWBA7MS

43NKKC01F6R8KV2J7PSM 43NKKC01J719ELR5XROO 43NKKC031MHN4QWLA84F 43NKKC01MMZWVWBLQMK0

43NKKC00QLFMU9CB4B1U 43NKKC02LS3OPL75D24D 43NKKC02WLK4KT6F2R4S 43NKKC03OZNFDESCCISU

43NKKC02D4ZGQI7I1T2M 43NKKC00AD4AYXCYIZUP 43NKKC02J8L1KI7U72SY 43NKKC001CNUY6N9IFQR

43NKKC02QF3GWAI4SWY2 43NKKC01TQ4Z20SXBLGE 43NKKC02P4P0BBG2HHFD 43NKKC03QAHPAIG5XESR

43NKKC022DFPZV1RY5GE 43NKKC03W4PH1F2F8H0X 43NKKC03AZFK3150ZAJZ 43NKKC00RWNTH7XXFX7U

43NKKC02WI7HJI1A0M17 43NKKC00B28RFN57K7FJ 43NKKC019ZA0FNOH44KF 43NKKC00UAC17MMNUCBW

43NKKC02J4P8RL3N7TBE 43NKKC03K0X0ASS3QHLJ 43NKKC01GS9N5UMI7ZJV 43NKKC01PHX3G7UVPAVM

43NKKC007V79M23A5W5F 43NKKC0137UF12JMZDZF 43NKKC01DQZMLU8ITG1Y 43NKKC019S772V1KXJP9

43NKKC00E9JS5VM0II5D 43NKKC01WQGOBUNK1Y5Q 43NKKC02ZLJNOQQB5VN4 43NKKC020DORNSHWKFZ3

43NKKC0282YG4QLE9O7V 43NKKC02FDHMNDC3COP1 43NKKC01EYKF4LWUTUC1 43NKKC00SK3PTKFKN1L1

43NKKC0047F79I0R6BBP 43NKKC01ZCVSG88HD6VB 43NKKC014EL2VU02GNBW 43NKKC02817QRYJTJT0D

43NKKC01309OBJMM6MK0 43NKKC000D2JBKG6VLG4 43NKKC03OHBDNFOW447T 43NKKC02MTAVC0L39AAZ

43NKKC03QEGRXVTZNY9Z 43NKKC0247RWZFXEQ9R5 43NKKC01N37GZFB8NKAX 43NKKC02JYG0S6A0ZX6V

43NKKC00IIM96SQ5KL7U 43NKKC0272QDD73VVJBV 43NKKC0318S7FTLJWXD3 43NKKC01PD8DEIKYG9PG

43NKKC01LUP5DFE8QF1I 43NKKC03IMWPL7C9PVGS 43NKKC01PB4U406YHPBU 43NKKC01ONUD3FBMOE99

43NKKC00I4IBPIC6QSZK 43NKKC01TKR3NSEJ5M2H 43NKKC03HPVRVBMES7H5 43NKKC01SRPH5XA67XMJ

43NKKC01J4D6EEFRL8S3 43NKKC009TYV0Y1S0NXG 43NKKC0223Y8AVL3GUOS 43NKKC00DG9G9WAX9OIV

43NKKC00ALXDAAVGP07P 43NKKC020MRZMEWIK2L7 43NKKC01N1DGDK72939R 43NKKC01QFVZIAJO3XL3

43NKKC03A3PXXML178U7 43NKKC02569DXJXB3R00 43NKKC012P0ITG2Y7EPE 43NKKC01G1M6KNSTSRC3

43NKKC010UBR0VT7EFJ8 43NKKC03Q3K9TQGYZXFN 43NKKC02IPLNGMOLSQXT 43NKKC0156ZXZ5GYZHQV

43NKKC03AZQHY8P9YQ5B 43NKKC02KX0O1V1SK920 43NKKC01RYV7KMHLUPOT 43NKKC021J8J3R1VMSG6

A.4 Dataset (15-30)

Seed playfield generation options: object size = 15 to 30, density = medium, spacing = medium.

4298JQO2HLK2K0U4I25D 4298JQO3S5QWR3NOIOSM 4298JQO3ES33FWGVGSQ2 4298JQO02NV3DMBC972M

4298JQO046XGE5S5TJ7I 4298JQO23RHKOI6XNIMO 4298JQO1DRMIW8TU0THK 4298JQO0Y57WRQ8U3DO6

4298JQO2X9ND9DYBN7IJ 4298JQO01KPEE3JO5JKI 4298JQO1MZ3OUAE9T6WQ 4298JQO1N8OYY3C1384B

4298JQO38PJ17ACH474X 4298JQO0QBYQMMFVGJGA 4298JQO2L1H909YT06P3 4298JQO13GVP17G32XUC

4298JQO2IYPL8NRF3RP8 4298JQO2FM79HX6P2QKI 4298JQO0UQBNWXV6F719 4298JQO2A9F14NUBAYUC

4298JQO0UN0EUF82290P 4298JQO0G7KLJM2YDD1I 4298JQO2YLXEA5KD9QVA 4298JQO2PE176NRL55NU

4298JQO3KZZFF0FCRD2O 4298JQO3DKM5ZPAHHM1U 4298JQO2A00Q2JLRRL6F 4298JQO2PCU3RL0NM6CT

4298JQO3SGYW4JA05TD7 4298JQO1H4OM0RS0N50T 4298JQO1GY1QQU2B2GBJ 4298JQO1942GKBUS20R9

4298JQO00VW02S7VYZ16 4298JQO36PX6WEW711SI 4298JQO3F8G6QOI5P3JG 4298JQO2IEL3EKYV6W9Q

4298JQO235SKA46BTD9E 4298JQO0Z5GW1U06EN1M 4298JQO2WF6XDT3R25AS 4298JQO3EG06BE5V0BA2

4298JQO26594FIPNE94D 4298JQO1IL2OTR03U8SS 4298JQO3JPY2C1IKX5SM 4298JQO1XHQHIT1Q0XFF

4298JQO1ILTQW4UUZK8B 4298JQO32O48ZWVGGJC2 4298JQO3PJQ491LUHRQD 4298JQO315HH1NRCGGTE

4298JQO2XZA62RJPOKK6 4298JQO151RLY4Q4TCH2 4298JQO1EXZJY4C0RVIC 4298JQO01EN8T21OD9L3

4298JQO2ODGO83S502LO 4298JQO28O2GE299EJ5F 4298JQO0E3QOKSM1XZWC 4298JQO0DYLMJGY6XMZ9

4298JQO35FBTZ2SVLQ5M 4298JQO1V73YZJ1DU8SF 4298JQO0YKOBWSSV1SCL 4298JQO3B3GX158AELAD

4298JQO0H9Y4USWB087S 4298JQO2NKTU54T75XJA 4298JQO007HQ0BU1XZUT 4298JQO10I64ZPX4FAZO

4298JQO1Q5LK6K7VCW41 4298JQO16EAD0MQPE9W2 4298JQO2DRCKOQR4CE1N 4298JQO25GZF61RR9CGJ

4298JQO2NP2JKRUOGZC3 4298JQO37RW55CAIR1X9 4298JQO1CP5W5INKKCML 4298JQO2JOQ6XTM60DRS

4298JQO321PZ92VXQU76 4298JQO1REITXCFF9KAB 4298JQO10PZCMDX4G79K 4298JQO3RQHVKJQHE58A

4298JQO2BD99CHJDM1NJ 4298JQO1TMTZDODP9FV9 4298JQO3CJZWFECNCA15 4298JQO21726M81HH94K

4298JQO0W0T3UWLOID6S 4298JQO02G007BNUGY5G 4298JQO1ZDXE4SO1V4W1 4298JQO19SA8G5WP1G6F

4298JQO3NG5U9J3O1CT0 4298JQO2FU6AW4HWD3CD 4298JQO3JUD9P5R7YNS5 4298JQO2WGBKE8OKSZ4C

4298JQO2FQE3FI6W8M5K 4298JQO0BQ5ZMMHFW0JC 4298JQO1NKPQ0Z24J0ON 4298JQO225VD8O70YVC6

4298JQO10V300MLTLBUP 4298JQO1EWQS0OH3Y41U 4298JQO2D58VMBDXB9T5 4298JQO02Q6QRC5YFZGT

4298JQO1LS9O0HJQUI82 4298JQO1A892KFTS4CL6 4298JQO2NFGD07EQAJ9H 4298JQO2HJYN6CN546P9

A.5 Dataset (10-25)

Seed playfield generation options: object size = 10 to 25, density = medium, spacing = medium.

40V3JZK2RROA7CFI9PKF 40V3JZK1KMPL1ZSIPSAI 40V3JZK1J0QHGV7Z385X 40V3JZK13HFLZ9DS7HAJ

40V3JZK0XYDI2Y4R3D4F 40V3JZK2QM85BB47C6AQ 40V3JZK3SLOSPKLDDOG3 40V3JZK1NZHEVVOO9FQ0

v1.3 25/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

40V3JZK1LWJGL937G88T 40V3JZK00QSYIW3O7WT6 40V3JZK067JJHUK9NGHG 40V3JZK2HAZ3800MLC1C

40V3JZK0PHXD8DHM2LNZ 40V3JZK2CVPARAH310N4 40V3JZK17VNRDU3ABKFM 40V3JZK02N3TPQLCYRJW

40V3JZK1ELCIMP6I5BGA 40V3JZK3B4STEURV27SH 40V3JZK0PWV23ET73QQ3 40V3JZK3O5TP4HWJI9H0

40V3JZK2P0LXXW74YHR9 40V3JZK3MY60A4O8NKLR 40V3JZK308FL87SX40CW 40V3JZK1PMWG9PI4PKML

40V3JZK3OZD004AHVI0B 40V3JZK18ZTI511B8RSV 40V3JZK1D1TN38T1PA50 40V3JZK14HQX89RBEI7P

40V3JZK3S1L2RGE7YX0M 40V3JZK1AEW0JTIY9ALV 40V3JZK1FAYSUQ1JYAQS 40V3JZK28EVD8N1MAP07

40V3JZK3KO75RTW604PK 40V3JZK1AC7MJCW31XRL 40V3JZK0HRPA37ECEVX8 40V3JZK1RCJG4P4PUX7X

40V3JZK3CR1141Y2804X 40V3JZK1M9JHKVCTD1LX 40V3JZK0TZNLOQBLK6IZ 40V3JZK0GM71YRDH9D23

40V3JZK37G4HE0YI3YMR 40V3JZK129PZXFQFZ8AC 40V3JZK3CG3NONKH8RPN 40V3JZK0BDBA0KB78EEY

40V3JZK2U1CYV0Z6LQJS 40V3JZK3PZ7E36KJJ6I8 40V3JZK2K9VS2SFO8NIB 40V3JZK1AS4JEJBMSYZJ

40V3JZK2Z0EO6S19TDIL 40V3JZK0U9RDRHVNARXL 40V3JZK0XGFFND48OB1N 40V3JZK3P7MNP0TCIA9H

40V3JZK1PMB3U0L7LD1D 40V3JZK1WAK79Y414I9U 40V3JZK1AL9MX8V1YB99 40V3JZK2LR7GW0FPIWHO

40V3JZK3IFYSM25BHVVJ 40V3JZK0Q4G7YHKFTXDM 40V3JZK04Z2ZWQ5MR7V9 40V3JZK1X5PN1TXR3T19

40V3JZK22YRB67528JL2 40V3JZK1W8XK2L9Q5ECF 40V3JZK0T48H8W6H4485 40V3JZK10V2RD9KYAHI0

40V3JZK0WSAEW6T0RNGA 40V3JZK0MM21AMC01KK8 40V3JZK3OPXSOJ933GTT 40V3JZK30ZKQ2NYDE7F4

40V3JZK0UYXNFZTOJ8GL 40V3JZK1KXJK59ZB1GEN 40V3JZK19VPIPNK7EKT5 40V3JZK063I5PXCCOU3M

40V3JZK2S789G279GAI8 40V3JZK2NI4KXBH1GWT6 40V3JZK3CV1H7ZDKN89I 40V3JZK1VIM9EQCZWETQ

40V3JZK0WSY7ZXRTXHNN 40V3JZK1OQOW4XDH3SLX 40V3JZK0XJAOSR9EV7F4 40V3JZK0SNXP2HUS7GXI

40V3JZK2OQTL6CT14YW3 40V3JZK0GLHNT3ZM8UCS 40V3JZK1IIXYD04L10KY 40V3JZK0IYRP0DXWJO6V

40V3JZK34CPF8IGQKCMO 40V3JZK1WTW74QUTH6LH 40V3JZK2KEM7RDNIRMRF 40V3JZK27A3LCMMVVE9A

40V3JZK23U7XFGF76PMH 40V3JZK0KZWHT8YBM7TW 40V3JZK2YDH2IDUXFOPI 40V3JZK3VE8B1PDLHGZR

40V3JZK1EL18S4WYXFWK 40V3JZK1G436OL9Q2COG 40V3JZK1NFRR9M5TK3LN 40V3JZK1P2Z9T5BCY3U3

40V3JZK2IIUA1YLMBJDW 40V3JZK3VAGDEK9NOPY9 40V3JZK03I9PIA51K108 40V3JZK31BNH87DME0RY

A.6 Dataset (Small)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

40UWJ5C21PC9TZQ8QC43 40UWJ5C0371FJ0SFVV9W 40UWJ5C2JKXW54X0D4ZU 40UWJ5C3UBPPE681KXJ0

40UWJ5C29D63NVT8202K 40UWJ5C26NC80E1DWQPT 40UWJ5C1R9VG109WJPCI 40UWJ5C2TCFVKNBSO3J2

40UWJ5C248YM0YAXVTFU 40UWJ5C0X681KMR6D4RJ 40UWJ5C1GYZ5LH6SYMUY 40UWJ5C0TTL3KNMSQ8Z9

40UWJ5C2HGK76UZEF9OI 40UWJ5C2FUZIGPYSDW36 40UWJ5C38O5YPTYNHAF5 40UWJ5C3QAHYST1GRFCO

40UWJ5C3HV9XQBP1MNS3 40UWJ5C16FZD4YEHX084 40UWJ5C0PGIT81KQ3Z1S 40UWJ5C2L4V3G5XM7HX8

40UWJ5C1YCTTVR3P9XRF 40UWJ5C3CW77PSV5Z2J7 40UWJ5C1U2A5FP8VAMBM 40UWJ5C029UI7MBGEE9C

40UWJ5C23SOOE2YDPIVX 40UWJ5C1AA25CK2P2REJ 40UWJ5C0M0ULNKN1U3VV 40UWJ5C2BXFEWM2LTLRL

40UWJ5C073KEH9EFTXAL 40UWJ5C30M5HQC1TSDHC 40UWJ5C1S2J70KTTN14L 40UWJ5C2UG6SEYX4NUF3

40UWJ5C1FZQBAVNSKURY 40UWJ5C0TIIFDXKC8WOF 40UWJ5C128IWADCH1FZS 40UWJ5C339FZRUBTGTZI

40UWJ5C3HGQL5YRIOPKZ 40UWJ5C3E9PRTICOWMYM 40UWJ5C31NXH5FAPWKTX 40UWJ5C14CDT3YHCARNZ

40UWJ5C2K7NGSK350UJS 40UWJ5C3ADV55MNFV5RQ 40UWJ5C0ZXEVM9URUDK5 40UWJ5C2TZ6W9EA1ADTF

40UWJ5C1HWDOMNYI9W3F 40UWJ5C0060W6US7LV7J 40UWJ5C19C7GCA3FRYXF 40UWJ5C0199ROFPRFCI4

40UWJ5C034D3WNZ8WKQC 40UWJ5C2DMFEL5K0ZT7D 40UWJ5C2HAB9J7DOFZM8 40UWJ5C1GHU37UHZB383

40UWJ5C1J958YZPPQLAR 40UWJ5C176HHBYMLUB7T 40UWJ5C2L64IIPPKZKPP 40UWJ5C1ZAZ4JK426HZE

40UWJ5C2HXEYD164YU8S 40UWJ5C1ASCTSEUBZFHI 40UWJ5C1FUD6ID1WT1E8 40UWJ5C0F416CI0T33N7

40UWJ5C0WIRLAKR1QDHY 40UWJ5C2C5XYRI6HK60Y 40UWJ5C06E8H31SSQ4VZ 40UWJ5C34KY50HNZ09R7

40UWJ5C1UAY4NLV94DGR 40UWJ5C1FJ39Y7HIG0OP 40UWJ5C1S7I3GV85W704 40UWJ5C3VXAPJZR50UG2

40UWJ5C0O2N310W5VCUL 40UWJ5C2F7NOQPCBAYPB 40UWJ5C020LPRQ3765HW 40UWJ5C29SJ08LP2XUL8

40UWJ5C2GZ4E6PXGLP25 40UWJ5C0AZBZ8Z4HH6AB 40UWJ5C3QEMAA8RWR6XG 40UWJ5C14V2OTMR38HPM

40UWJ5C0K1HEWP0NXUJB 40UWJ5C0P55NQNY3DAIY 40UWJ5C1QEDUVD18WMQ2 40UWJ5C052RCYUZC0Q0I

40UWJ5C3H6NNPLID58EN 40UWJ5C2C11K7FO5FO3I 40UWJ5C21YQQR2XS4G52 40UWJ5C3TCN23H1DJR1J

40UWJ5C0V4GMBC91VJ8P 40UWJ5C2I46CY7QSKM2C 40UWJ5C1LMWRFNFG6L92 40UWJ5C205Z4R4Z10ZWV

40UWJ5C2T8OBBZI6KW0Q 40UWJ5C22M3OGF8ORY60 40UWJ5C3NOM41PCS57QT 40UWJ5C2EARDT7MCGHOM

40UWJ5C1967UJ2G97DZ8 40UWJ5C3R5SW1VC0JILX 40UWJ5C1E3PYKH64TB4F 40UWJ5C1B4ESRN8UTUUE

40UWJ5C3SJOIGKTVLQV5 40UWJ5C3C5B5XVNSM2ET 40UWJ5C0XEJH2PB4ZRKD 40UWJ5C1PP1EFMGOIERA

A.7 Dataset (Segmentation)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

40UWJ48276AXVDYARA35 40UWJ482QU9KFBAHAMHK 40UWJ482U7JZRNY0M878 40UWJ481BV180TRUU4BE

40UWJ482ON8VEN8PGMTC 40UWJ483ROR92CBXVHY8 40UWJ4832XKIJ34Z44EF 40UWJ482FDYKZH11I2P9

40UWJ482KHE5IY5OMAJB 40UWJ481MRKG3AGZ42RV 40UWJ4832YOUMZNPQFU6 40UWJ483BI1A71HUTZKQ

40UWJ4827UVQCXANBB6X 40UWJ481B3SGHQQOLBBJ 40UWJ482JKI19NM92W8P 40UWJ482J6IKTHAE3KSR

v1.3 26/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

40UWJ4801XL4QCUMS9P4 40UWJ4826T4IFCZV107I 40UWJ481WF2S7H7NZLSA 40UWJ483PVKG96OQN5TS

40UWJ482QSZ7F1A2J6K1 40UWJ480ZSSJZI0FI4DO 40UWJ482XLPXD0I1GBXU 40UWJ4810WZSYUPS8LX9

40UWJ480K9ZOFPTYKI6M 40UWJ483BAF8Q0TGI41Y 40UWJ480DAH1M471128N 40UWJ482T2R806LYVX5Z

40UWJ483P5AHY9BFV94G 40UWJ4809WHTLP1Q8RA5 40UWJ480443ZUFV9BLP5 40UWJ482KI2FI1PKNHGL

40UWJ482VFMENEP0V1AF 40UWJ4829KJX0WP7W2DI 40UWJ48284F81XURJ5AH 40UWJ481K8FKDEKTK8N8

40UWJ48043R97BXO2YLT 40UWJ48053APQ846E82Y 40UWJ4820F98L9VB423O 40UWJ4825CBYSWKJJWN0

40UWJ4815LYPX7SBOO2F 40UWJ4808U6PW1I18OYB 40UWJ481QCRKB4DL57WA 40UWJ481QI676E637UJJ

40UWJ4802U60N4OXM9NC 40UWJ480IWTD41YZ4RNO 40UWJ480YK21P0R0QX3H 40UWJ483NIPQG2WCFK1J

40UWJ481L1WQYAAQDMTU 40UWJ480FJPG27LACVDE 40UWJ482TEEFAOPBR4KS 40UWJ4802UJ5WECDLAW5

40UWJ483GWI7P0JBK3TP 40UWJ480MJ76HRO02QVL 40UWJ482ZSA22LHWODGY 40UWJ4826B7R0WV3UTN3

40UWJ482VCOQ65KCH05H 40UWJ481UYPCDWYEXOP7 40UWJ483M7CKMIVJNCL5 40UWJ482UNIWDOF932HR

40UWJ481IFEXF5EUW17P 40UWJ481R6O7UKVF8HG9 40UWJ480EOD3TBPKG5U0 40UWJ483LB8BRZFQZSED

40UWJ481HTZY4SFY6CT0 40UWJ481D7ABEMT0W88K 40UWJ481JDGCM3S2ZMZ3 40UWJ4813FM90G2VCJGZ

40UWJ482MR3JEI0MJPZF 40UWJ481XZKD08QUJ9WC 40UWJ483DDS5LY1KO8QK 40UWJ483RQFO0T2TMNTM

40UWJ482MOI56LYQC0S6 40UWJ483I3TN3QU7XLUC 40UWJ483CKEP9JY999T2 40UWJ482MU2IJWTYCHP5

40UWJ481QXOLV3TLXPT8 40UWJ48041TQITIYL1IU 40UWJ4827BPZT9YO1FPX 40UWJ482HUHXN7SQOT8D

40UWJ482URO1DGUGD2RL 40UWJ483DP9JQ4QQR1I7 40UWJ4828IBWLE5I6MFL 40UWJ480KNISDMMC91A4

40UWJ4828R1302PMD0AF 40UWJ48228COBV8NH1ZC 40UWJ480LP47B5CJP2QI 40UWJ482QAGXFRH23X92

40UWJ482JP8LLSYVSANP 40UWJ483UOROF1XNVGKH 40UWJ482QY5FRH21UYUG 40UWJ480FREBOOMHA3K0

40UWJ480OEZM06W6WGUP 40UWJ483BPKATWBRTST1 40UWJ482OT6Z3WHRQX1N 40UWJ48270GPBWMRSU2Y

40UWJ483B2QS8ZQUWFZJ 40UWJ482MV7BGXJ27DH4 40UWJ481Y1O8EV1HICHC 40UWJ482E5ZORK4NR2T6

A.8 Dataset (Decomposition)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

40UWJ483OI977M388P9U 40UWJ481OB3BD0HJI52V 40UWJ482FIG8B7JLJ8SY 40UWJ48173HJDNJ2WPZM

40UWJ481XTFMDV00XGYW 40UWJ482V5FDJPRILB6S 40UWJ482VX12AM8C8ZHT 40UWJ481O3YLFZNTZDD4

40UWJ483ICQULE1ZK4U7 40UWJ481SAY0WMAF8V2P 40UWJ4804O30AMH4VVLC 40UWJ4813ZKDEI77RZEC

40UWJ480XIRRLXLN52BD 40UWJ4819JNMC1HP3IIO 40UWJ4822SWLS80TC6T6 40UWJ480GAUQLEU51NE5

40UWJ483A2GYGVL5H3PY 40UWJ482E103IZS85CG2 40UWJ480E1TJIQ0QFTZB 40UWJ483JX58FFBB1OOZ

40UWJ48123JK3OOFISAE 40UWJ480OPNEHUB8HHS3 40UWJ4813CFVVQY6XN03 40UWJ482EBPMQ5U499HI

40UWJ481YM0AM9O2JXAH 40UWJ481DKHLGF98PIR0 40UWJ481MX01W1YUOZ61 40UWJ481A4VEUHVS81RI

40UWJ482ROA8B8JQ0QTL 40UWJ483JOGY9ICMYAZN 40UWJ482RYX228AE3MWB 40UWJ481ROCB7RI2E1HB

40UWJ481MY16FN46WUN5 40UWJ48010N0MV0EMS09 40UWJ4835UHQ5OA8CG4V 40UWJ482M60ILI12TUSZ

40UWJ4824PD0EM5XN978 40UWJ480XYQDAHT119XE 40UWJ480NQEXWMTNWJ9X 40UWJ483481OC1AERX5M

40UWJ48395ZP3OSRUAPI 40UWJ481EIWEFM13IAO3 40UWJ483Q80DZ9KVGAG6 40UWJ482SM21SBM2TI2O

40UWJ4801R4J6ZQYD7MI 40UWJ482HJLGNTI1GTA6 40UWJ483H7JQ6FKO9ZFU 40UWJ481BKUEV1VMIDDT

40UWJ480AE9I6ZJEJW0A 40UWJ4812OQRWYATUN6Q 40UWJ480KF306VGE4GRK 40UWJ482D3XPEK1I0LEX

40UWJ48384WHG92MNDJY 40UWJ480R5E9U2E9DEPT 40UWJ480YW2SKTC1LUHK 40UWJ480L4SCJ0CKG9NX

40UWJ482UY42PCG3HXPF 40UWJ483I3ZF08Y34XZ6 40UWJ480F35OV27GCRPD 40UWJ480PA1N6VVN7P1B

40UWJ481DNTRIGPZI3ZW 40UWJ4832MCT8MLX0AU0 40UWJ483IA3G45NYFI01 40UWJ4837FX5D2KAP9A0

40UWJ480OWQ7KRQ50FL6 40UWJ480MEG83K62Q1CA 40UWJ483T9HN8PVB5BKH 40UWJ480WDDORVO7LY8Y

40UWJ480KRPXWH3Q7Y35 40UWJ480J35O3WRP2T3M 40UWJ481NXR7Q41V6GIC 40UWJ483019ZZ64NZP6Z

40UWJ483O5IZF8XGAHOM 40UWJ480OKIV0ZQETUE5 40UWJ4839NDHBK5C9TIT 40UWJ482N0CGWP2LT9JG

40UWJ4834D6USN7P7PX3 40UWJ480JNBWQYKBY1HX 40UWJ482MQ1VT52WX368 40UWJ4803141EXTYH2DV

40UWJ483H0S69EN4JLP8 40UWJ482AIDI7VNX0Z0E 40UWJ483J8YYLUHZUGDR 40UWJ481NEG3BRGIBLVL

40UWJ483ILJRX15QQTAL 40UWJ480UJM5DIELEVD3 40UWJ483T2D411EVXNYB 40UWJ4831JEQKGPJNUN7

40UWJ481959O90J34HTR 40UWJ48223ELKVBT3G7N 40UWJ4808H3I9XRNVJX8 40UWJ48259ZB0GU7DEBG

40UWJ4839CSQFXD8P4C9 40UWJ481Y5C5867UEU0Q 40UWJ481JMREPP99ODKT 40UWJ481BTAEUBJ3HGE1

40UWJ482RWWFBQG7MUFW 40UWJ481CI40WMNRNU6I 40UWJ4836LHSY2LTVP3J 40UWJ480SZ3PWDIVIUTM

v1.3 27/27

	Introduction
	Previous Work
	Algorithms
	Convex Object Merging
	Dynamic Vertical Decomposition
	Efficient Segment Intersection Testing
	Miscellaneous Algorithms
	Conjugate computation
	Line extension and clipping
	Hull splitting
	Helper line computation

	Evaluation
	Construction Characteristics of Partition Trees
	Average depth of segments in Segment Partition Trees
	Segments per node in Segment Partition Trees
	Trapezoid depth in the Vertical Decomposition

	Visualisations
	Vertical Decomposition
	Segment Partition Tree
	Merge Callipers

	Concluding Remarks
	Datasets
	Dataset (Large)
	Dataset (Medium)
	Dataset (20-40)
	Dataset (15-30)
	Dataset (10-25)
	Dataset (Small)
	Dataset (Segmentation)
	Dataset (Decomposition)

