ConvexMerger: Algorithmic Optimisations & Challenges

An area maximisation game based on the idea of merging convex shapes

Roan Hofland Emiliyan Greshkov
Eindhoven University of Technology Eindhoven University of Technology
r.w.p.hofland@student.tue.nl e.greshkov@student.tue.nl

14th of May, 2023

Supervisor
Irina Kostitsyna (i.kostitsyna@tue.nl)

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Contents

[L__Introduction|

2__Previous Work]

[3__Algorithms|

3.1 onvex Object Merging| L L
8.2 Dynamic Vertical Decomposition| o
3.3 Efficient Segment Intersection Testing| Lo
8.4 Miscellaneous Algorithms| oL L
[3.4.1 Conjugate computation|
3.4.2 ine extension and clipping]
3.4.3 ull splitting] o o
[3.4.4 Helper line computation| L

4 Evaluationl

4.2 Average depth of segments in Segment Partition Trees| 0L
4.3 Segments per node in Segment Partition Trees| o oL
4.4 Trapezoid depth in the Vertical Decomposition|

B Visialsations

.1 Vertical Decomposition|. Lo o

[0.2 Segment Partition Treef o oo

5.3 erge Callipers| L L e

Concluding Remarks|

[A"Datasets|

A.1 Dataset (Large)l. o o i
A.2 Dataset (Medium)| o
A.3 Dataset (20-40)] L
A.4 Dataset (15-30)] o .
A5 Dataset (10-25)] o o L
(
(
(

A6 Dataset (Small)l.o
A.7 Dataset (Segmentation)| L
A.8 Dataset (Decomposition)|. L

Version History

Version Date Comment

v1.0 2023-01-25 Initial version

vl.1 2023-03-08 Handle initial feedback & finish remaining sections

v1.2 2023-03-29 Various minor improvements to most sections

v1.3 2023-05-14 Various minor improvements based on received feedback

v1.3

16
16
17
17
18

19
20
20
22

22

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

1 Introduction

This work describes in detail the effort and results of a Geometric Algorithms Capita Selecta project. The goal
of the project is to improve the processing of several key elements of ConvexMerger, an area maximisation game
based on merging convex shapes. The focus is on improving the data structures and algorithms for efficient
handling of several key operations or to come up with novel optimised solutions and to implement them. The
key operations are point location, convex object merging, and segment intersection testing. Secondary goals
include the addition of more and better animations and general code quality improvements.

In ConvexMerger, up to four players compete against each other in a playfield populated with non-overlapping
convex objects. The goal of each player is to claim as large an area as possible while competing against their
opponents. Players take turns sequentially and during their turn a player can do one of two actions:

1) They can claim a new object which has not yet been claimed by any player.

2) They can merge one of their claimed objects with another object that is either unowned or is owned by
them. When two objects are merged they are replaced by a new convex object that has the shape of
the convex hull of the two merged objects. A merge is not allowed if there are any other objects on the
boundary of the resulting convex object. However, objects fully contained within the result will be stolen
from their current owner.

Figure depicts a playfield where two players have each claimed a single object, and Figure depicts a
possible next move. In the followup Player 1 merges their claimed object with an unowned object, resulting in
an object that absorbs Player 2’s claimed object.

The objects on the initial playfield are convex and new objects created through merging are also convex.
Tt is possible to play the game with up to four players, some or all of which can be Artificial Intelligence (AI)
players, and it is possible to play online multiplayer. The game ends when the active player has no moves left,
at which point the player with the largest owned area wins. The game is also available as open source software
on GitHub [

ConvexMerger can be played entirely with the mouse. As mentioned, players can either claim an object or
merge objects during their turn. Next we will give a more formal description of the merge of two objects. Let
us refer to the selected object as the source of the merge s, to the other object as the target ¢, and to the convex
hull that would result from the merge as r. The merge between s and t is only allowed if the boundary of r
does not intersect any other object’s boundary. If the merge is allowed, then r is created, and s, ¢t and any other
objects on the interior of r are absorbed into it, including objects that are claimed by other players. The game
promotes strategic thinking for the selection of objects to claim and setting up advantageous merges is crucial
to winning. For example, while a naive playstyle would be to always play the move that yields the largest
increase in area for that turn, this strategy is unlikely to win in a serious game. In fact, one of the implemented
AT players (Isla) follows this strategy. Instead, it is more beneficial to consider the long term gains. This can
for example be done by merging two smaller objects into a longer object that can be merged with an object on
the other side of the playfield next turn. Alternatively, extremely large merges like this can be used to try to
absorb objects from an opposing player.

(a) A playfield where Player 1 and Player 2 have made a (b) The same playfield right as Player 1 has chosen to merge,
single object selection each. absorbing Player 2’s claimed object.

Figure 1: Example of a merge on a generated playfield.

The game has several types of events that trigger throughout execution. One event is the human clicking on
the playfield, which triggers a point location query. If the point is located to be inside an object, then that

Thttps://github.com/RoanH/ConvexMerger

v1.3 3

https://git.roanh.dev/roan/convexmerger

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

object is to be selected or claimed if possible. Another event is the attempt of a merge. Here a few things
happen. First, the segments that will be added to complete the merge are computed. These are the segments
on the boundary of the result r that are part of neither s nor ¢, and we call these merge segments. Afterwards,
the merge segments are tested for intersection with any other segments. If they intersect nothing, the merge is
executed and the underlying data structures are updated, otherwise the merge is rejected.

At the start of this project, the result of Convex Object merges was computed using the Jarvis March
algorithm, also known as the Gift Wrapping Algorithm [23|. The same algorithm was used for computing the
helper lines visible while a player has selected an object that they want to merge from. For point location
queries, we used the Vertical Trapezoidal Decomposition data structure [17], rebuilding it after each convex
object merge. Segment intersection testing was done trivially, i.e. the query segment was compared against
every segment of every object.

The main contributions of this project comprise optimisations to the computation of convex hull merges,
point location queries, and segment intersection testing. A secondary contribution is the addition of visualisa-
tions for each of the improved algorithms. Convex hull merges were improved with a two-pass algorithm that
computes both the segments needed to merge a pair of convex objects and the resulting hull of the merge. A
more detailed explanation is available in Section [3.1] and the corresponding visualisation is described in Section
(.3l Point location query handling was improved by dynamically updating the previously static vertical trape-
zoidal decomposition instead of rebuilding it at every update, resulting in worst-case O(logn) query times and
O(n) update times. Further details on this can be seen in Section and the corresponding visualisation is
showcased in Section Segment intersection testing is improved using partition trees to divide the plane and
only test a subset of the segments stored only at some plane subdivisions. Two types of partition trees were
implemented, and the use of conjugation trees is particularly interesting, as the static set of points throughout
the game and the insertion of segments means that the structure does not need to be dynamic, resulting in
O(n%%9) query and O(logn) update times. We also looked into engineering a novel structure for intersection
testing, and found several existing structures that would not work well for ConvexMerger. Further details on
segment intersection testing can be found in Section [3:3] and the corresponding visualisations are discussed in
Section

In Section [2| we will present a survey on the literature that we have found relevant to the goals of the
project. Then, in Section [3, we will go over each of the main algorithmic improvements and mention some
auxiliary algorithms. For each algorithmic improvement, we will first quickly describe and analyse the starting
point, then we will describe the idea of the improvement, perform runtime analysis, and discuss implementation
details, design choices, and issues. Section [f] contains an evaluation on the performance and characteristics of
the implemented data structures. Section [5] presents the various visualisations that showcase the structures on
top of the playfield and the animations that can be triggered during gameplay.

2 Previous Work

Convex Hull merging The first topic we looked into was convex hull merging, more specifically the problem
of determining the common convex hull of two convex objects. At the start of the project, the implemented
algorithm for convex hull computation was the Jarvis March [12]. For a set of n points it computes the convex
hull in O(nh) time, where h is the number of points on the resulting convex hull. It does so by first finding the
leftmost of the points, pg, first (bottom one if multiple), then finding the point p; such that the line pop; has
the smallest angle to the positive y axis. Both points are on the hull, and each next point p; on the hull can
be selected as the point such that the line p;_1p; has the smallest angle to p;_op;_1. We find h points this way,
with each point requiring up to n comparisons, leading to the described running time.

A faster alternative for finding the convex hull of a set of n points is Graham’s scan [11], which sorts all points
around an interior point and adds them to the hull in order while removing the middle points of concavities
during addition. The algorithm runs in O(nlogn) time, dominated by the radial sort. Finding an interior point
and the construction of the hull take linear time each. Several even faster algorithms exist, such as Chan’s
algorithm which uses a combination of Graham’s scan and the Jarvis March for an O(nlog h) runtime [4].

Another angle to attack the problem is based on the ‘rotating callipers’ approach, originally introduced by
Shamos [18] as an advancing algorithm for finding the intersection of two convex polygons. Toussaint finds
how to use the rotating calipers to compute the bridge lines between a pair of convex hulls that are required
for building their common convex hulls [22]. The algorithm does a single pass of all ¢ points on the two hulls,
resulting in O(t) running time. The idea is that we start off with two vertical (or horizontal) lines passing through
the leftmost (bottom-most) point of each hull. Then we rotate these in the same direction simultaneously along
the boundaries of their respective hull. At exactly two angles, the lines will coincide and they will bridge the
hulls such that all points of both hulls lie on or on one side of the coincident lines. At least one point of each
hull will lie on the bridge line, and the segment between them is the bridge segment, or as we will refer to it
later — the merge segment.

v1.3 4

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Point Location using Vertical (Trapezoidal) decomposition One of the first decompositions of poly-
gons into trapezoids was done in 1981 by Lee within the context of computer graphics [13]. A couple years later
Fournier and Montuno present an approach for the triangulation of simple polygons, possibly with simple poly-
gon holes, via a trapezoidal decomposition constructed in in O(nlogn) time [9]. The decomposition approach
to triangulation was then extended for any set of segments that do not intersect outside of their endpoints by
Seidel using a randomised incremental construction algorithm for a O(nlogn) construction time in expectation
[17]. While linear-time algorithms for triangulation exist, the trapezoidal decomposition is simpler. Trapezoidal
decompositions can also be used for point location, with query times of O(logn) in expectation. These variants
are static, however multiple works provide dynamic versions of trapezoidal decompositions for various settings
|7, 5 16, 110], including for the general case [2].

Segment intersection testing One of the founding works on segment intersection testing was published
in 1976 by Shamos and Hoey, and it presents an O(nlogn) algorithm for checking whether an intersection
exists between any pair of n segments [19]. Bentley and Ottman present an improvement that can count the
number of intersections in O(nlogn) and can find and report all k intersections in O(nlogn + k) time. These
algorithms however operate on the whole set of segments and find all intersections between them, while we are
only interested in the intersections with newly added segments. Furthermore, we only need an answer as to
whether an intersection exists, creating the opportunity of further optimisations via early stops and ordering
the search space.

We then looked in the direction of structures that support testing a query segment for intersection with any
segment from a set of n segments that do not intersect each other except at endpoints. One such structure is the
visibility polygon [1} [20], which can be used to answer whether a query segment intersects any other segments
by checking whether one of its end points can see the other. The construction of the visibility polygon is done
for a single point and takes O(nlogn) time in this setting. Therefore, it must be constructed for each query
and has to be reconstructed after updates to the set of segments, leading to O(nlogn) query and update times.
Since the query segments for segment intersection in ConvexMerger are only between the existing segments’
endpoints, an alternative approach would be to precompute the visibility complex of each point and take note
of what points lie within, resulting in O(n?logn) construction and update time and faster queries.

Since we expect a lot of segment intersections, we surveyed dynamic structures that allow for fast insertion
and deletion of segments. One class of such structures are dynamic partition trees |16]. These trees are built
on top of partition trees |15], such as kd-trees [3] and conjugation trees [§]. Kd-trees alternate between vertical
and horizontal bisectors to recursively partition the points in the plane in (near-)equal halves. Conjugation
trees have one arbitrary starting bisector, and each next bisector is a conjugate of the previous, meaning that
it bisects each of the halves split by the previous bisector. It is proven in [24] that a conjugate always exists
for a bisector, and [14] provides an algorithm for computing a conjugate in linear time. Another interesting
detail is that since the point set of ConvexMerger is static, there is no need to use the dynamic conjugation tree
proposed in [16], and just the standard conjugation tree as in [8] can be used.

3 Algorithms

Geometric Setting: Before describing the algorithms it is useful to introduce the geometric setting of the
game and the assumptions that can be derived from it. These assumptions can be used when designing new
algorithms for the game, and the algorithms in this report rely on these assumptions. Note that some of these
assumptions could be considered implementation detail, meaning that algorithms could be adapted to handle a
different situation (e.g., for the 4th point, using clockwise winding order). Given that the game is based around
non overlapping convex objects, some useful assumptions can be made about the points and lines algorithms
need to work with. We will also specify some invariants we take care to maintain when merging objects. The
following list summarises the key assumption of the setting, here line segments refers to the collection of all m
boundary line segments for all the convex objects, and points refers to the collection of all n boundary points
for all the convex objects. Note that n and m initially have the same value, since each object has the same
number of boundary segments and boundary points. However, while the initial point set does not change during
the game, the set of line segments does. Each merge executed during the game results in two new line segments
being created between two preexisting points. While there are also segments that can be removed after a merge,
this is not currently done by the majority of algorithms presented in this section. Therefore, it is worthwhile
to make a distinction between n and m. However, note that the maximum number of merges during a game is
linear in the number of objects. This means that m will always be bounded by O(n).

1) None of the convex objects intersect. Note however that it is possible for remains of an object that was
absorbed in a merge to be fully contained in another convex object.

2) All convex objects have a non-zero area.

v1.3 5

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

3) The first point of the hull of points that defines a single convex object is the bottom left-most point.
4) All objects are convex and have a counter-clockwise winding order.

5) None of the line segments overlap or intersect, with the exception of the end points.

6) None of the points coincide.

7) On the boundary of a single convex object no three consecutive points are collinear. This is an invariant
we take care to maintain when merging objects.

3.1 Convex Object Merging

Convex hull merging is the core idea behind ConvexMerger. When two objects 0; and o5 are merged into r,
there are two line segments that need to be created that link o; and o5, we call them merge segments. These
are the only line segments on the hull of r that are not on the boundary of either o; or os.

As mentioned in Section [T} the algorithm previously used for computing the convex hull of the merge of two
convex objects is the Jarvis March [23]. It should be noted that this approach does not directly provide us with
the merge segments. Instead, these were computed using a separate algorithm. The algorithm takes as input
the two original hulls 0; and 02 and the new hull r. It assures that o; is the original hull with the leftmost
point, by swapping 0, and o5 if that is not initially the case. It then iterates the points of r and o0y in parallel,
both iterations starting from the bottom leftmost point on r until the points no longer coincide. Then, the last
iterated point on r, p1, is part of 0; and the current point py is part of 0y, meaning (p1,p2) is the first merge
segment. From p, onward, the points of r are iterated in parallel with the points on 09, and again whenever
they do not coincide, the last iterated point ps on o2 and the current point ps on o1 make up the second merge
segment (ps, pg). This algorithm runs in time linear to the number of points on all three input hulls.

We improve on this with an approach loosely based on the algorithm for convex polygon intersection by
Godfried Toussaint [21]. Our approach borrows the rotating caliper approach from Toussaint, which observes
that the two line segments on the merged convex hull that have an endpoint on each of the initial convex object
can be found by simultaneously rotating two lines ¢; and cs, called calipers, along the peripheries of the hulls.
At exactly two moments, ¢; and ¢y will coincide. The points around which the calipers rotate at these moments
we call merge points, and the line segments between each pair of merge points — merge segments, or merge lines.

The calipers ¢; and co start out vertically and oriented upwards, rotating clockwise around each object’s
leftmost point. Rotation happens simultaneously for the two calipers by the smallest angle such that the next
point on either convex object is reached. For the convex object whose point was reached, we change the rotation
point of the caliper to the farthest point in the object that the caliper intersects, skipping over collinear points.
The rotation ends whenever the calipers have rotated around all points of the two objects and have reached the
initial points. An example showing the process is given in Figure [2]

Let us name the convex object whose leftmost point is further left, or below in case of ties, o1, and the other
— 09. Observe that initially ¢ does not lie counterclockwise to the orientation of ¢;. Whenever this changes
during rotation of the calipers, we observe that the points around which the calipers have been rotating are a
pair of merge points. Since this happens exactly twice for a pair of convex objects, the two merge lines m; and
my are formed by four points mp,, mps, mps and mps. The first merge segment m; is directed from o7 to o9
with endpoints mp; and mps, and msy is oriented from oy back to 07 with endpoints mps and mpy.

To obtain the convex hull of the merge, we start from the first and leftmost point of 01, since it is guaranteed
to be on the convex hull of the merge result. Then, we add all points of 0; up to and including the source point
of my, mp;. For 09, we add all points in sequence, starting from , mpo, and ending with mps. Finally, we add
mp4 and the remaining points of 01. In case of collinearity of points along the resulting convex hull, the middle
collinear points are excluded from the result.

The runtime analysis for this algorithm is fairly simple. As can be seen in the algorithm description, we
iterate the points for each of the input convex objects twice. Once for computing the merge lines, and a second
time for obtaining the resulting convex object. The operations during each of these iterations take constant
time, resulting in a total asymptotic runtime of ©(t), where ¢ is the combined number of points on 01 and o0s.
Note that it is possible to compute both the merge lines and the result of the merge in a single pass, however
we decided to keep the computations separate as we use the merge segments separately for other features.

v1l.3 6

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

b3

D6 P6
° °

G 0 02
P1 \
.
D2 Da 0/ D7

(a) Initial vertical state of calipers.

/ D6 - /;]50
Y O e ° =

0 02
b1 \
o
b2 pr

Dy & P4 o/

(c¢) Reaching ps. (d) Reaching ps and then the first caliper coincidence.
b3 b3
o D5 P D5

o —— D%

o 09

’ 0 09 ’ G
P1 \ pr \
- @ - L]
) - CE/ D7 j) . =E/ D7

(e) Passing through p7, p2, reaching ps and the second (f) Reaching p: again and finishing the rotation, reaching
caliper coincidence. initial position.

Figure 2: Example depicting how the merge lines are found. The calipers start out vertically at the leftmost
points and "roll” around a convex object each. Whenever the calipers coincide, a merge line is found.

3.2 Dynamic Vertical Decomposition

Point location in ConvexMerger is used to determine whether the location that the user has clicked on is inside
a convex object and if so — which object was clicked on. Initially, point location queries were done naively,
where each query point p was checked for containment in every convex object, resulting in a runtime equal to
O(m), since each segment is part of one object.

Before the start of this project, we implemented a Vertical Decomposition structure that partitions the
playfield into trapezoids whose parallel segments are both vertical. Every query point p is consecutively tested
whether it lies left or right of points and below or above segments, in order to determine which trapezoid p lies
within. The control sequence of which points and segments are to be checked is stored within a search structure,
which is a directed acyclic graph that has an expected height of O(logm) whenever the random incremental
construction (RIC) approach is used to initialise the decomposition. Lastly, whenever the trapezoid that p lies
within is discovered, the convex object that the trapezoid lies within is considered. Each trapezoid is part of
at most one convex object at a time, and as such in ConvexMerger we represent this link in the form of a
mapping function from trapezoids to convex objects. Figure |3 shows an example vertical decomposition of a
single object and Figure] shows how the decomposition visualisation looks in ConvexMerger on a playfield with
some executed merges.

v1.3 7

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Pl/pz \ bs
B
LN

outside

[\

outside

P2 2 P3

s — |
3 2 ! outside \‘
bie— 4 outside outside

(a) Example of a vertical decomposition on a single convex (b) The search structure for o1 when the segments are in-
object. serted in the order 2,3,4,1. Note how both 4s point to the
same “outside” trapezoid.

Figure 3: Example of a vertical decomposition for a single convex object. The outside trapezoids are not named
here.

L Player 1
7 167.887

Select an object

Figure 4: The visualised vertical decomposition of a playfield.

If the RIC approach for vertical decomposition is followed, the vertical decomposition construction time is
expected to be O(mlogm) [17]. Point location queries can be answered by going down the search structure
in O(logm) expected time. However, at the start of the project, the decomposition was static, which meant
that whenever a new segment was added to the decomposition, which is the case with merges, it would have to
be rebuilt. Rebuilding after every merge means that updates to the decomposition have the same O(mlogm)
expected runtime as construction.

Here we will note that the RIC approach works under the assumption that there are no two points on the
same x-coordinate, which bounds the number of neighbours of each trapezoid to at most four. The assumption
can be lifted by defining a topological order on the points or by using the perturbation technique, that means to
slightly shift all points along the z-axis based on y-coordinate until no two points are on the same z-coordinate.
In ConvexMerger, the assumption is not used nor lifted, however occurrences where two points lie on the same
z-coordinate, with different y-coordinates, are rare. Having more than two points on the same z-coordinate
that are not separated by a segment is an even rarer occasion. Such cases are rare in practice, and no more
than a few have been spotted per playfield, thus they carry little impact to the runtime of the decomposition

v1.3 8

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

construction, queries, and updates.

The improvement to the vertical decomposition implemented in this project is to dynamize the structure.

Instead of rebuilding the whole decomposition upon merging objects s and ¢, only the merge segments m; and
mo are inserted into it. This creates new trapezoids and requires extra bookkeeping for all affected trapezoids.
After the new trapezoids are created, the trapezoids affected by a merge are all trapezoids within the resulting
convex hull, that is all trapezoids within s and ¢, and the area enclosed between s, t, m1, and ms. The extra
bookkeeping is in the link between trapezoids and the convex object they are part of. Whenever a merge between
two objects happens, the resulting convex object r is considered a new object, so the affected trapezoids must
be remapped towards r.
Another possible improvement that we did not implement as part of this project is to rebuild occasionally.
This would be done to maintain the balance of the decomposition search structure. Using the RIC approach,
the height of the search structure (a tree with internal nodes representing points and segments, and leaves
representing trapezoids) is expected to be O(logm) after construction. After each segment addition, parts of
the tree get deeper, which can disbalance the search structure and invalidate the O(log m) query time guarantee.
To rebalance the decomposition, it can be rebuilt after some number of updates. This number can either be fixed
or dynamic. For a static number of updates if the decomposition is rebuilt every logm merges, the O(logm)
expected height is maintained. Alternatively, a criterion for disbalance can be introduced, e.g. average or
maximum height difference between leaf nodes, and the decomposition can be rebuilt after a specific threshold
for disbalance is reached.

Analysis The beginning point of the analysis on the cost of updates is the addition of the inserted segment
8;, which takes time linear in the total number of segments in the worst case, since there are O(m) trapezoids
total, each of which s could intersect. Then, the updates to the search structure happen in constant time for
each intersected trapezoid. Finally, during the update of the trapezoid-to-object mapping, no more than O(m)
trapezoids will be visited in the worst case, as each trapezoid is visited at most once.

The vertical decomposition is (re)built in O(mlogm) time. Rebuilding every x merges takes an amortised
ol ml‘;ﬁ) time per merge. Therefore, when z is chosen equal to m, the amortised rebuild time is O(logm).
Seeing as merge segment insertion takes linear time, rebuilds can happen more often, and rebuilding once every
log m updates would result in O(m) amortised time per update. Middle points between these values exist, such
as ¢ = y/m resulting in amortised O(y/nlogn) update times. The value of x should be chosen depending on
the expected query-to-update ratio.

The analysis above shows that the improvements to the vertical decomposition in this project reduce the
update time from O(mlogm) to O(m), and shows an approach to ensure the balance of the search tree and the
O(logn) query time at the expense of updates with O(m) amortised runtime.

3.3 Efficient Segment Intersection Testing

Segment intersection testing in ConvexMerger is used whenever a merge is attempted to check whether the
merge lines between the source and target object intersect the segments of other objects. This is used both for
human and ATl players. In fact, each Al makes a multitude of such checks per turn before choosing their move.

Trivial segment intersection testing, by checking whether the query segment intersects each segment on the
playfield, takes O(m) time. To improve upon this, we implemented two segment partition trees, as presented
by Overmans et al. [15]. One is based on kd-trees [3|, and the other is based on conjugation trees [8]. It was
not necessary to implement both, however we first implemented the kd-tree as a simpler proof of concept.

Conjugation trees Conjugation trees partition their set of points based on a bisector and its conjugate. A
bisector is a line (or segment) that splits a set of points into two equal-sized sets, possibly containing some of
the points on itself. A conjugate of a bisector is a line that intersects the bisector and is a bisector of both of
the equal-sized split point sets. For any given bisector, a conjugate always exists[24].

The construction of the conjugation segment partition tree happens in two parts. First, for the root node r
we partition the complete point set into p; and p, of equal size using a vertical bisector b. Afterwards, for the
child nodes we partition respectively p; and p, using the conjugate ¢, of the parent’s bisector b. For each child
node chld, the conjugation tree is recursively built with chld as its root node and ¢, as its bisector. Figure
depicts the bisectors of a possible conjugation tree on a set of 16 points.

Kd-trees The construction of the kd segment partition tree is done analogously to the conjugation segment
partition tree, with a single difference. Instead of conjugates, the partition alternates between vertical and
horizontal bisectors, which are lines that go through the median point(s) in the horizontal (resp. vertical) order
of the point (sub)sets. For each visited node v, the points are sorted on the on the x-axis if v is an even distance
from the root, otherwise on the y-axis. Then, the median point m, is picked, and a line perpendicular to the

v1.3 9

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Y L ° 4
° °
° °
°
1 .
o, ° °
° °®
° °
0
3
1 .
°
°
° °
°
®
° 3
T e]
5
°
1 °
° e /4
2
° °®
4 °
o 4
3 °

Figure 5: Level-by-level conjugation tree construction on 16 points. The bisectors are depicted in cyan, and
the number next to each bisector represents the level of its node. The first bisector is vertical, and every next
bisector is a conjugate of its predecessor.

sort axis is run through m,, bisecting the point set. Afterwards the algorithm recursively executes on a pair of
child vertices, containing one of the split subsets each. Figure [f] depicts the bisectors of a possible kd-tree on
the same set of 16 points as in Figure [f]

The addition of segments to the two types of trees happens the same way. After the partition trees are
constructed, we then insert the segments one by one into the constructed tree, beginning with a visit to the root
node. For each visited node v, if the segment to be inserted s fully intersects the area of v, meaning s intersects
v’s area but has no endpoints inside it, or if v is a leaf node, we store the segment at that node. Otherwise, we
check whether s intersects the bisector of v, and if so, we visit both children of v. Otherwise only the child that
is partially intersected by the segment is visited. Later updates to the playfield that result in the addition of
segments also use this insertion approach.

Intersection testing queries are handled the same way for kd and conjugation trees, starting at the root
node. For every visited node v, the query segment s is checked for intersection against all segments stored in v.
If s fully intersects v’s area or if s intersects the bisector of v (clipped inside the area of v), both of v’s children
are visited. Otherwise, only the child that is partially intersected by s is visited. If at any point v intersects a
segment stored at a visited node, the search concludes.

Analysis The construction of kd-trees follows the standard algorithm [3]. Sorting the points takes O(nlogn)
time at each depth level (as there are k = 2¢ nodes of % points each). After sorting, the remainder of the work
at each node takes constant time, so the total construction time is O(nlogn -logn) = O(nlog®n). Here we can
note that the addition of the segments at the nodes takes O(logn) time per segment, for a total of O(mlogn)
time, however since in ConvexMerger m = O(n), this does not impact the asymptotic bound. We can also
note that with extra bookkeeping the points can be sorted only twice, once for each axis and filtered in linear
time instead of O(nlogn), which would reduce the running time by a factor of O(logn). This was omitted in
ConvexMerger in order to simplify the complexity of the code.

Similarly, the construction of conjugation trees takes O(nlog?n), as at the root level a vertical bisector is

v1.3 10

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

° L ° 4
° °
° °
° e
° 2 °
o, ° ° °, ° °

1 1 2

° °® ° e
° i ° o
0 °
° 4 4 1 e —"4
i 3 3 ° PR 3
° °
2 0 2 ° 4
°, ° ° L . —

1 2 4 1 2

° ° le—— °®
3 3 3 3
[} b —_— 4
7] T °
° °
®
W4 4 ° 4
o3 3
°
50 o 4))
o 4 1 2 o
. °
3 3 .
.4 4
°

Figure 6: Level-by-level kd-tree construction on 16 points. The bisectors are depicted in cyan, and the number
next to each bisector represents the level of its node. The first bisector is vertical, and every next level of
bisectors alternates between horizontal and vertical.

computed in O(nlogn) time analogously to the kd-tree, and at each internal node a conjugate on n points
is computed in O(nlogn) operations (see Section [3.4.1)). Similar to kd-trees, we take O(nlogn) time at each
depth, leading to the aforementioned O(n log?n) construction time.

For kd-trees, segment intersection queries on m segments between n points can take O(n - m) = O(n?) time
in the worst case. The case would be when a lot of segments are all linked to one point. A depiction of how
this would look like for convex objects and their merges is depicted in Figure [7}

As can be seen on the top-right of the figure, when all objects are merged in a specific sequence, some node
in the kd-tree will store one segment per object. In fact, more than just that node will store these segments.
If the sequence of objects is generated at a particularly small angle, the merge segments would be stored in
O(n) cells. For a query segment that intersects all of these cells, such as a hypothetical merge segment of the
next object following the example structure, this leads to to the aforementioned O(n?) runtime. Such a case is
extremely unlikely in ConvexMerger, where on average each node only contains a small number of segments, as
will be shown in Section This puts a lower bound on the worst-case within ConvexMerger at 2(n), however
we were unable to prove an upper bound tighter than O(n?).

The runtime analysis of segment intersection queries for conjugation trees is based on Edelsbrunner and
Welzl’s discovery that the worst-case recurrence for queries on conjugation trees can be bounded using its
similarity to the fibonacci sequence [8]. They found that in the worst case, for a set of points split by a bisector
and its conjugate, any straight segment will intersect at most 3 out of the 4 divided areas of the plane. This is
because from any point not on the lines, to enter another area would require intersecting one of the conjugates,
and two straight lines can only intersect at most once, see Figure [§| as an illustrative example. The runtime
T'(n) of a segment intersection query for some segment on a set of n points is then the recurrence:

T(n)=T(Gn)+T(in)+ =

Here z is the time spent at each node. Edelsbrunner and Welzl prove that for z = O(logm), intersection testing

v1.3 11

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Figure 7: Sketch of worst-case scenario for kd-trees. If the bottom object is consecutively merged with all other

objects from left to right, the kd-tree cell coloured in red just above the original bottom object will store a
segment for every merge, meaning a segment for every object other than the bottom-most one.

using conjugation trees runs in O(n'°82¢) = O(n%6%), where ¢ = (14 /5) is the golden ratio. As can be
seen in Section in ConvexMerger the number of segments stored at a node averages at fewer than 2 for

m > 2000. This is well within the O(logm) bound, so even when testing the query segment for intersection
0.695)

with all stored segments in visited nodes, the proof holds and the O(n bound applies.

Figure 8: Example of two conjugate bisectors on a set of 8 points. Note how the red segments can not go
through 4 of the areas divided by the bisectors.

3.4 Miscellaneous Algorithms

In this section we will describe some minor helper algorithms that are interesting to cover, but not necessarily
very complicated.

3.4.1 Conjugate computation

For the implementation of conjugation trees, a key component is the computation of the bisectors and their
conjugates that partition the tree. For a set of n points, a bisector b is a line that separates the point set into
a left subset p; and right subset p,. of equal size (or off by 1). A conjugate of the bisector is then a line ¢, that
is a bisector of both p; and p, simultaneously.

Literature on the topic states that a conjugate always exists [24], and that an O(n) algorithm is possible[24],
however we found the algorithm complex to comprehend and implement. As such, we first implemented a naive
approach and later came up with an alternate solution that compromises between speed and simplicity.

The naive solution to conjugate computation iterates over all pairs of points of the form (z,y) where x is a
point in p; and y is a point in p,. It then considers the line passing through the pair of points as a candidate
conjugate Ceqnd. FOr cecang the number of points on each side of it is computed, separately for p; and for p,.. If
the number of points on each side differs by at most one for both subsets, c.qnq is returned as the answer.

v1.3 12

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

The naive solution proved to be the bottleneck of the algorithm, taking up to tens of seconds to generate the
conjugation tree on playfields with the highest population settings. To remedy this, we propose an alternative
algorithm. The basis for the algorithm is the observation that in the general case, the computed conjugates
pass through points that are either the median points of p; and p,, when sorted on the projection of the points
onto the bisector b, or that the points were very close to being median in their respective subset.

The algorithm starts by sorting p; and p,- on the projection of each point along b. Then, the median points
my and m, of the subsets are selected and the line passing through them them is chosen as the first candidate
conjugate ceounq. Afterwards, p, is sorted radially with relation to m;, and p; is sorted radially with relation
to m;. If m; and m,. are still the median points of respectively p; and p;., then c.qnq is indeed a conjugate of
b. Otherwise, select a new c.qnq passing through one of m; or m, and the current median of the opposite set,
respectively the median of p, or p;. The process continues until a conjugate is found.

One issue that was discovered was that in some cases of collinearity, the choice of candidates would loop.
To tackle this, whenever c.q,q has already been chosen before, a new candidate is sought, starting with points
that are adjacent in index to the current candidate points in the sorted subsets and searching for more distant
points until a yet unchosen candidate conjugate is found.

The naive implementation has an asymptotic runtime of O(n?®). This comes from checking |p;|- |p.| = O(n?)
pairs of points as defining points of candidate conjugates, with each candidate taking O(n) to iterate the subsets.
The proposed algorithm first sorts p; and p, in O(n logn), and then takes O(nlogn) time per candidate conjugate
to sort the two subsets again. In the worst case, when all points are collinear, this would take O(n®logn) time
total, as all pairs of points may be checked, depending on the initial order. A way to solve this case that we
did not implement is to add a third dimension to all points and assign values to each point in that dimension
that would define a topological order in case all points are collinear in 2D. This would reduce the worst-case to
O(nlogn) as only a constant number of candidates will be considered.

(a) Initial state, including the bisector and the perpendic- (b) First candidate conjugate, passing through the median
ular segment of each point to the bisector. The segments point on each side. The points to the top-right are sorted
on each side are numbered in order from top-left to bottom- w.r.t. the angle that the segment from m; to the point
right. makes with the green line.

+‘}_

6® e o my(4)

30

T7e
ce

(c) Last candidate conjugate, passing through the old m; (d) Last candidate conjugate, passing through the old my

the median point on the top-right. The points on the the median point on the top-right. The points on each side

bottom-left are sorted on their angle to m,. are sorted on their angle to m; or m,. Since both points the
line passes through are medians, the candidate is indeed a
conjugate.

Figure 9: Conjugate computation on a set of 15 points and an existing bisector.

In our observation of the proposed algorithm’s implementation in ConvexMerger we found that typically
at most three candidates are considered before the algorithm converges, which confirms the average O(nlogn)
runtime. While the proposed algorithm does not match the best achieved theoretical running time bound of
O(n), it is easy to implement and it is intuitive. An example showing the computation of a conjugate with this

v1.3 13

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

algorithm is shown in Figure [

3.4.2 Line extension and clipping

In order to visualise how the playfield space is divided by conjugation trees, there is a need to resize the
partitioning segments to the bounds of the cell that they split. These operations are not necessary for kd-trees,
as all partitioning line segments are orthogonal to the axes and each cell is a rectangle.

Before delving into line extension and clipping, it is important to note that the underlying data representation
mentioned in Section is not actually a line, but a line segment between points, as that is sufficient for
finding out through which points the conjugate passes.

Extension to the ends of the playfield In order to obtain the final conjugate line within the bounds
of the playfield from the chosen candidate segment, first the slope s and the intercept b at the zero z-
value are computed from the segment. Then, the z-coordinate of the two points p; is computed as z; =
min(play field width, max(0, =2)) and z = min(play field width, max(0, w). The minimum and
maximum operations are included to ensure that the z-coordinates are within the bounds of the playfield. The
y-coordinates are then computed as y; = b+ s- 21 and y3 = b+ s- x2. The line segment ((z1,y1), (z2,y2)) is
then guaranteed to end at the boundaries of the playfield due to the way that the z-coordinates were computed.

Clipping to the area of a node A conjugation tree node’s area is bound by the playfield bounding box
and by the bisectors of the node and a (non-strict, possibly empty) subset of its ancestors. For the node and
each of its ancestors in order, the line to be clipped [is tested for intersection with each of the bisectors b;. If [
intersects with a b; at point p, [is limited to p in the direction that heads past the bound of the node’s area.
When all ancestors are visited, the line will be clipped down to the node’s area.

3.4.3 Hull splitting

The conjugation trees presented in Section [3.3] partition the playfield on each side of multiple segments. One
way to look at the playfield is as the convex hull of four points that form a rectangle. Each bisector of the
partition tree splits the hull into smaller hulls that cover the same area. Hull splitting takes a hull A, and a
splitting line [, and splits h, into two hulls h; and h, that cover the exact same area as h, such that the points
of h; are on one side of [or on [and the points of h, are on the other side of h, or on [. Hull splitting is used
to efficiently maintain the areas that the playfield is split into by the conjugation trees. The resulting hulls are
used in the visualisations in Section and for the segment intersection testing in-game animations.

The hull splitting algorithm first iterates through the points of the original hull h, until a point p; is found
that is on a different side of the splitting line than the previous visited point p;_1. This indicates that there
is an intersection at a point ¢; between [and the segment (p;_1,p;). Since it is on both hulls, 4; is added to
both h; and h,. Then, iteration continues until again a point p; is found on a different side of I compared to
pj—1. This indicates that [intersects (p;_1,p;) at i2. All points from p; up to but excluding p; are added to
h, in order of iteration. Then, 45 is added to both h; and h,. Finally, the remaining points, from p; up to and
including the final point on the hull are added to h;, followed by all points from the first point on the hull up
to but excluding p;. In the edge case that the splitting line intersects the hull at a single point (or not at all),
the algorithm immediately outputs a zero-area shape and h,. A picture of how a hull is split in two by a line
can be seen in Figure

P1 P1

(a) The original hull h, and the splitting line I (b) ho split into h; and h.

Figure 10: Hull splitting example on a hull with 5 points.

As can be seen from the description, the algorithm features at most two passes of all n points on the hull of h,.
Therefore, the running time of this algorithm is ©(n).

v1.3 14

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

3.4.4 Helper line computation

Whenever a player clicks on an object they own, two helper lines project from the clicked object towards the
cursor and move along with it. The helper lines are useful for players to more easily estimate whether a merge
is possible by moving the cursor around. A picture of how this looks in-game can be seen in Figure

2 Player 1
% 17.705

Figure 11: In game view of the helper lines.

The lines are computed by simulating a merge between the selected object obj and the point p at which the
cursor is located, using a modified version of the caliper approach described in Section The helper lines
are exactly the merge lines between obj and p. The rotation of a caliper c¢ is simulated, starting from a vertical
position at the leftmost point of obj and rotating around obj by iterating its points in order. We keep track
whether the orientation of p changes with respect to ¢ as ¢ rotates. Again, as with the convex object merging
approach, the two merge lines are found exactly whenever the orientation changes (see Figure . Since the
goal is to find the merge lines, this algorithm can stop as soon as the second merge line is found instead of
completing the rotation.

v1.3 15

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

4 Evaluation

In this section we will evaluate the performance and characteristics of the data structures we have implemented.
The goal of this section is twofold, the first goal is to explore interesting questions that arose during development,
and the second goal is to justify some assumptions that were made in the rest of this report.

4.1 Construction Characteristics of Partition Trees

Although the primary goal of this section is to explore if there are any notable differences between kd-trees
and conjugation trees, the vertical decomposition also fits the definition of a partition tree. As such, it is
theoretically possible to make a segment partition tree that is based on a vertical decomposition. Therefore, the
vertical decomposition will also be included in the analyses in this section. For the evaluations in this section
we will make use of six datasets, each containing 100 playfields representative of possible games. For each of
these datasets the playfield density and spacing are set to medium while the object size is varied from small
to large. We used seeds with custom object sizes to generate the playfields between the in game medium and
large setting. Note that the size of objects is inversely correlated with the number of objects that can be placed
on a playfield. Some statistics for the average sizes of these datasets are shown in Table [I] and the datasets

themselves are available in Appendices A4 and

Dataset Objects Points Segments

Large 18.41 73.64 92.05
Medium 45.34 176.41 221.75
20-40 115.07 460.28 575.35
15-30 206.11 824.44 1030.55
10-25 347.59 1390.36 1737.95
Small 474.53 1898.12 2372.65

Table 1: Average sizes of the playfields in the datasets

Figure shows the data structure construction time increasing when the number of objects increases. Judging
from the plots all data structures have similar runtime scaling, which for all should be O(nlogn) (n being either
points or segments), the plots appear to be in line with this runtime. The average depth of a leaf node for each
of the structures is shown in Here we see that kd-trees and conjugation trees have an average depth that
corresponds almost exactly with the optimal height of these structures, which is log(n). Notably, conjugation
trees are slightly deeper, presumably due to the fact that the point set does not always need to be split in two
parts of exactly equal size. However, the vertical decomposition seems to be deeper than expected, this issue is
explored further in Section |4.4]

Datastructure Construction Time Average Leaf Depth
E T T T T B 50 T T
i i 40 + s
107 | E
@ i] = 30 —— Decomp
~ [i =
) & —— kd-Tree
E I | A/ Conjugation
) 20 + =
=108 E
g —— Decomp 1 10l |
| —— kd-Tree || ///
Conjugation
10° b : : \ \ = 0L 1 1 L L !
0 100 200 300 400 500 0 100 200 300 400 500
Objects Objects
(a) Construction time by object count. (b) Average leaf node depth by object count.

Figure 12: Datastructure construction scaling statistics.

v1.3 16

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

4.2 Average depth of segments in Segment Partition Trees

One core feature of segment partition trees is that segments can be stored at higher levels in the tree when
they fully intersect a cell of the induced partitioning. This feature means that a query potentially has no need
to travel all the way to a leaf node to determine if an intersection exists. While this feature is not very useful
with regard to human players, who presumably make mostly valid moves without intersections and thus always
cause the search to hit leaf nodes. For Al players this is different, as they require the segment partition tree to
determine if a move is legal. As such it is interesting to investigate where segments are stored in our segment
partition tree implementation. Moreover, it will be interesting to see if there are any major differences between
kd-tree and conjugation tree based segment partition trees. For this investigation we make use of 100 games
and record the average number of segments stored at each level of the segment partition tree before and after
the games. The games will be played by two greedy Als (Isla) and the game seeds are available in Appendix

A7

Total segments by depth

104 E - ! L I A

- |IDKD-Tree (Post) - 5,000]

3 [II KD-Tree - 2.000 |- 4]

10° |00 Conjugation (Post) g _ E

é - 8 Conjugation I i | 1,000 |- 1]

=) - | |

gﬁ 10 E I 0 il I e e e e e e e e - 44

) r] —T T T T T T B

E B 2 4 6 8 10 12 14 16 18 20 22 24 b

g 10t | O E

B F [] B

> - I H B g HEHHEOR @
Y 0

£ 100F :

= r B

<t i i

107t g -

1072 F |

2 4 6 8 10 12 14 16 18 20 22 24
Depth

Figure 13: Distribution of stored segments across the layers of KD-tree and conjugation tree based segment
partition trees before and after a game, based on the dataset in Appendix [A.7]

Figure shows the average number of segments stored at each level before and after the mentioned games,
post game averages are marked with ‘Post’. Due to the large variation in where segments are stored a log scale
is used for the main figure. However, to provide a better view of the distribution a miniature plot without
log scaling is provided in the top right corner. From this figure it becomes clear that kd-tree based segment
partition trees store nearly all segments at leaf nodes. Conjugation tree based segment partition trees on the
other hand appear to store segments in a normal distribution around the average leaf depth. We currently do
not have a good explanation for this difference, so this might be interesting to further investigate in the future.
Finally, it is worth noting that during a game more segments get added to higher levels of the tree. This is an
expected result as good merges are as large as possible and thus naturally have longer merge lines. These long
merge lines then have a higher chance of fully interesting a high cell in the induced partitioning, allowing it to
be stored higher.

4.3 Segments per node in Segment Partition Trees

One core assumption on which we based our runtime analysis for segment partition trees in Section [3.3] is that
a relatively small number of segments will be stored at any given node in the segment partition tree. To validate
this assumption we have computed the average number of segments stored at each depth level of the segment
partition tree across 100 games. In order to get an idea of how this number changes over the course of a game
we let each game be played to completion by two greedy Als (Isla) and the game seeds are available in Appendix
[A77 The results of this experiment can be seen in Figure the post-game results are marked with ‘Post’.

v1.3 17

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Average segments per node by depth
| | | | | | | | |

DOKD-Tree (Post)
9l IEKD-Tree |
[0 Conjugation (Post)
£z [0 Conjugation
S 15| :
g
&
N
g 1) |
=
z
05 [m
-0
T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24

Depth

Figure 14: The average number of segments stored at each layer of KD-tree and conjugation tree based segment
partition trees before and after a game, based on the dataset in AppendixlE

It is clear from these results that our assumption is valid, with the average number of segments per node rarely
reaching 2. Furthermore, there are no major outliers. On average, before the game the maximum number of
segments stored in a single cell was 5.26 for kd-tree based segment partition trees and 3.7 for conjugation tree
based segment partition trees. After the games were played this changed to 8.55 for kd-tree based segment
partition trees and 6.59 for conjugation tree based segment partition trees. Although these numbers are larger
than the averages, they are not indicative of any major outlier issues and also do not invalidate our assumption
for the runtime analysis. Notable is that the for both kd-tree and conjugation tree based segment partition trees
a comparatively large number of segments is added to the higher levels of the tree during a game. This can be
explained by the fact that primarily long line segments get added during a game. Since the goal of the game
involves finding the largest merges possible, the added merge lines are also generally longer than the segments
that make up the initial set of convex objects. As a result these segments are more likely to fully intersect the
larger higher level cells of the segment partition tree, which is required for them to get stored at these levels.
Finally, as already noted during the analysis of where segments get stored, using kd-trees results in a relatively
high number of segments being stored at the leaf nodes. Consequently, the average number of segments stored
at the leaf nodes for a kd-tree based segment partition tree is also relatively high.

4.4 Trapezoid depth in the Vertical Decomposition

As mentioned in Section [3.2| our implementation of the vertical decomposition does not re-balance itself during
the game. As such, it is interesting to investigate if it would be worthwhile to implement techniques to keep
the search structure more balanced (e.g., rebuilding when the structure becomes too unbalanced). For our
investigation we observed 100 games and measured the average depth of all trapezoids before and after each
game. The games were played by two greedy Als (Isla) and the game seeds are available in Appendix Since
the search structure for the vertical decomposition is a DAG there could be more than one path from the root
to a trapezoid, we always use the longest path to compute the depth. Table [2| shows the average total number
of trapezoids and the average depth of an individual trapezoid before and after the games. Figure shows
how the trapezoids are distributed depth wise through the vertical decomposition before and after the games.

State Total Trapezoids Average Depth

Pre-game 3607.04 44.61
Post-game 4152.20 48.08

Table 2: Average vertical decomposition statistics before and after the games.

v1.3 18

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

Average trapezoids by depth
| | | | | | |

IEPre-game

00 Post-game
600 - 8

ﬁllltkh ladnl .,

38 40 42 44 46 48 50 52 54 56 58 60 62
Depth

Average Total Trapezoids

Figure 15: Maximum depth of vertical decomposition trapezoids before and after a game, data is averaged
across the 100 games in Appendix @

From these results we can surmise that the average depth of trapezoids in the search structure increases by
approximately 3.47. However, considering that most trapezoids were already stored at a depth of 38 or deeper,
this is not a very significant increase. Moreover, the merges that take place during a game naturally make
the number of trapezoids grow, meaning at least some increase in search structure size is expected. Thus, we
do not believe that there is much value in re-balancing the vertical decomposition during a game. However,
the vertical decomposition does seem to be deeper than one would expect. Given that log(4200) ~ 12, the
search structure’s depth of O(log(m)) has a constant factor significantly above 3. This is partially attributed
to the depth increasing by at most 3 per insertion, as is the case when an inserted segment lies entirely within
a trapezoid. Another commonly seen case is when one segment endpoint is in one trapezoid and the other is in
another trapezoid, which adds the newly created trapezoids at a depth of 2 deeper than the previously existing
ones. One of these cases occurs at almost every segment addition, which would explain the constant factor being
between 2 and 3. The constant factor being above that can be attributed to a poor ordering of the segment
additions during initialisation that in turn leads to an imbalanced search structure. Consequently, an improved
initialisation approach, such as true random initialisatiorﬂ might be more beneficial to look into.

5 Visualisations

In this section we will discuss some of the data structure visualisations and animations that were implemented
in the game. Generally, these visualisations are implemented as overlays on top of the normal playfield that
can be toggled on or off with a keybind. For users an overview of all these keybinds is available on the ‘Info’
tab, which can be accessed from either the main menu or the bottom right corner during a game. It is also
possible to enable multiple overlays at the same time, with the names of active overlays being displayed along
the bottom edge of the playfield. However, since we do not precompute or cache a lot of geometry for these data
structures game rendering performance can suffer substantially, especially when enabling a lot of visualisations
or when the playfield has a lot of objects. Moreover, some combinations of overlays are too chaotic to read
properly. Next follows a quick overview of all implemented visualisations and their keybinds.

1) [ctrl]+[C | Shows the centroids of the convex objects. This visualisation is not particularly interesting, so
we will not dedicate a section to it. However, centroids play an important role in playfield generation and
the object claim animation.

2) [ctrl]+[D | Shows the vertical decomposition, further discussed in Section

3) (ctrl]+[S] Shows the conjugation tree based segment partition tree, further discussed in Section
4) [ctrl]+[K] Shows the kd-tree based segment partition tree, further discussed in Section

5) (ctrl]+[M] Enables the merge calliper animation for merges, further discussed in Section

2Note that we currently add objects in a random order, which are essentially sets of segments closely located together.

v1.3 19

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

5.1 Vertical Decomposition

The visualisation of the vertical decomposition can be toggled on or off by pressing [ctrl]+[D]. When shown
the bounding box and the vertical lines that make up the vertical decomposition are rendered in cyan and all
segments that were ever added to the decomposition are drawn in black. Incidentally, because segments are
never deleted from the vertical decomposition, it is possible to see how large objects were created via merges
from the original playfield objects. Adding segments to the vertical decomposition is done with a slight delay
when the visualisation is active to make it slightly easier to see the effect of an individual insertion. However,
this feature is primarily used to animate the vertical decomposition being built from scratch. On the new game
menu it is possible to toggle the vertical decomposition animation using [ctrl]+[D . When a game is started with
the visualisation active the user can then see the vertical decomposition being built segment by segment in real
time. An example of a vertical decomposition visualisation is shown in Figure

Select an object

Showing: Vertical Decomposition

Figure 16: In game visualisation of the vertical decomposition.

5.2 Segment Partition Tree

Since the game includes two implementations of a segment partition tree there are also two visualisations. The
visualisation of a kd-tree based segment partition tree can be shown by pressing [ctrl]+[K | and the visualisation
of a conjugation tree based segment partition tree can be shown by pressing [ctrl]+[S] Functionally, both
visualisations work the same. For the underlying base partition tree the points from the point set that the
partition tree was built from are shown in blue, the structure of the partition tree itself is shown in cyan with
the dividing lines of deeper tree cells using a darker shade of cyan. The segments contained in the segment
partition tree are drawn in black. Similar to the vertical decomposition visualisation, this means it is possible
to see how larger convex objects were constructed. A segment partition tree visualisation based on a kd-tree is
shown in Figure [17] and a segment partition tree based on conjugation trees is shown is show in Figure

When a segment partition tree visualisation is active it will animate queries that are executed. However,
due to technical challenges and usability concerns only queries that result in a segment being added to the tree
are animated. Consequently, this means that no visualised queries ever find an intersection. However, this also
means that the animation always continues all the way to the leaf nodes of the tree, clearly showing which
cells are checked. The animation itself works as follows. The query segment is shown in blue at all times. The
animation then shows in sequence which cells are searched at each level of the tree from root to leaves, with a
slight delay before continuing to the next tree level. At each level all the cells being checked are shaded red,
any segments checked for intersection in these cells also light up in red. It is worth noting that the animation
can be cancelled at any time by simply disabling the visualisation overlay.

v1.3 20

Roan Hofland & Emili 3T ConvexMerger 2023-05-14

2 RoanH
14548

/ Select an object

Showing: Segment Partitions (KD)

Figure 17: In game visualisation of a kd-tree based segment partition tree.

2 RoanH
% 14548

/ Select an object

Showing Segment Partitions (Conjugation)

Figure 18: In game visualisation of a conjugation tree based segment partition tree.

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

5.3 Merge Callipers

The visualisation to animate merge callipers can be toggled using [ctrl]+[M]. When active, this visualisation
shows the merge callipers rotating around the objects involved in a merge in red. Any found merge lines are
shown in blue as soon as they are encountered. Four figures showing successive snapshots of the animation can
be seen in Figure

(c) Midway point of the animation. (d) Just after finding the second merge line.

Figure 19: In game animation of the callipers used to find merge lines.

6 Concluding Remarks

In this work we have presented several algorithmic improvements to various aspects of ConvexMerger and their
visualisations. The improvements concern vital elements of the game, namely point location, used for user
clicks, convex object merging, which is the core game mechanic, and segment intersection testing, which is key
in testing whether a convex object merge is possible. For each game element, we mentioned the base approach
used at the start of this project, explained what the new algorithms are and how they improve upon the basis.
The most notable improvements are to convex object merging, with the caliper approach running in time linear
to the number of points on the two merged objects, and segment intersection testing, with segment intersection
query times sub-linear to the number of segments.

Whilst the improvements to the running times of the various query types are significant, there is still room
for improvement. Namely, point location, handled by the dynamic trapezoidal decomposition, can be further
improved by inserting the segments in a truly randomised fashion. Another point of improvement would be
the computation of conjugates. A more efficient approach is already known [14], yet it was not incorporated in
favour of a custom approach that was simpler to implement.

References

[1] Tetsuo Asano. “An efficient algorithm for finding the visibility polygon for a polygonal region with holes”.
In: IEICE TRANSACTIONS (1976-1990) 68.9 (1985), pp. 557-559.

[2] N Baumgarten, Hermann Jung, and Kurt Mehlhorn. “Dynamic point location in general subdivisions”.
In: Journal of Algorithms 17.3 (1994), pp. 342-380.

v1.3 22

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

3]

A

Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”. In: Commun.
ACM 18.9 (Sept. 1975), pp. 509-517. 1ssN: 0001-0782. DOI: [10.1145/361002.361007. URL: https://do
i.org/10.1145/361002.361007.

Timothy M Chan. “Optimal output-sensitive convex hull algorithms in two and three dimensions”. In:
Discrete & Computational Geometry 16.4 (1996), pp. 361-368.

Timothy M. Chan and Yakov Nekrich. “Towards an Optimal Method for Dynamic Planar Point Location”.
In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science. 2015, pp. 390-409. DOTI:
10.1109/F0CS.2015.31.

Yi-Jen Chiang, Franco P. Preparata, and Roberto Tamassia. “A Unified Approach to Dynamic Point
Location, Ray shooting, and Shortest Paths in Planar Maps”. In: SIAM Journal on Computing 25.1
(1996), pp. 207-233. DOI: 10.1137/S0097539792224516. URL: https://doi.org/10.1137/S0097539792
224516l

Herbert Edelsbrunner, Leonidas J Guibas, and Jorge Stolfi. “Optimal point location in a monotone sub-
division”. In: SIAM Journal on Computing 15.2 (1986), pp. 317-340.

Herbert Edelsbrunner and Emo Welzl. “Halfplanar range search in linear space and O (n0. 695) query
time”. In: Information processing letters 23.5 (1986), pp. 289-293.

Alain Fournier and Delfin Y Montuno. “Triangulating simple polygons and equivalent problems”. In: ACM
Transactions on Graphics (TOG) 3.2 (1984), pp. 153-174.

Michael T Goodrich and Roberto Tamassia. “Dynamic trees and dynamic point location”. In: STAM
Journal on Computing 28.2 (1998), pp. 612—636.

Ronald L. Graham. “An efficient algorithm for determining the convex hull of a finite planar set”. In:
Info. Proc. Lett. 1 (1972), pp. 132-133.

Ray A Jarvis. “On the identification of the convex hull of a finite set of points in the plane”. In: Information
processing letters 2.1 (1973), pp. 18-21.

DT Lee. “Shading of regions on vector display devises”. In: Proceedings of the 8th annual conference on
Computer graphics and interactive techniques. 1981, pp. 37-44.

Nimrod Megiddo. “Partitioning with two lines in the plane”. In: Journal of Algorithms 6.3 (1985), pp. 430—
433.

Mark H Overmars, Haijo Schipper, and Micha Sharir. “Storing line segments in partition trees”. In: BIT
Numerical Mathematics 30.3 (1990), pp. 385—403.

Haijo Schipper and Mark H Overmars. “Dynamic partition trees”. In: SWAT 90: 2nd Scandinavian Work-
shop on Algorithm Theory Bergen, Sweden, July 11-14, 1990 Proceedings. Springer. 2005, pp. 404-417.

Raimund Seidel. “A simple and fast incremental randomized algorithm for computing trapezoidal decom-
positions and for triangulating polygons”. In: Computational Geometry 1.1 (1991), pp. 51-64.

Michael Tan Shamos. Computational geometry. Yale University, 1978.

Michael Ian Shamos and Dan Hoey. “Geometric intersection problems”. In: 17th Annual Symposium on
Foundations of Computer Science (sfcs 1976). IEEE. 1976, pp. 208-215.

Subhash Suri and Joseph O’Rourke. “Worst-case optimal algorithms for constructing visibility polygons
with holes”. In: Proceedings of the second annual symposium on Computational geometry. 1986, pp. 14-23.

Godfried T Toussaint. “A simple linear algorithm for intersecting convex polygons”. In: The visual com-
puter 1.2 (1985), pp. 118-123.

Godfried T Toussaint. “Solving geometric problems with the rotating calipers”. In: Proc. IEEE Melecon.
Vol. 83. 83. 1983, A10.

Wikipedia contributors. Gift wrapping algorithm — Wikipedia, The Free Encyclopedia. https://en.wi
kipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630. [Online; accessed
22-January-2022]. 2021.

Dan E. Willard. “Polygon Retrieval”. In: STAM Journal on Computing 11.1 (1982), pp. 149-165. DOI:
10.1137/0211012. eprint: https://doi.org/10.1137/0211012. URL: https://doi.org/10.1137/0211
012.

Datasets

This appendix lists the game seeds that were used to generate the datasets used for the evaluation in Section

v1.3

2327}

https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/FOCS.2015.31
https://doi.org/10.1137/S0097539792224516
https://doi.org/10.1137/S0097539792224516
https://doi.org/10.1137/S0097539792224516
https://en.wikipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630
https://en.wikipedia.org/w/index.php?title=Gift_wrapping_algorithm&oldid=1008251630
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012
https://doi.org/10.1137/0211012

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

A.1 Dataset (Large)

Seed playfield generation options: object size = large, density = medium, spacing = medium.

4C1KNWO3AT11XIFYDMVQ 4C1KNWOOFIRADDVBBSGS 4C1KNWOOGLOZ4SQDZ4TR 4C1KNW0021S08K23G3GK
4C1KNWO12HQOS5WD0J66 4C1KNWOO2U3HDVC9951K 4C1KNWOOT8QL1XWM74XW 4C1KNWO3UJOCWO2SMESN
4C1KNWOODPCDV3CBS6Y9 4C1KNWOOOI6JINO3MT8MD 4C1KNWO2GERFGOWT677M 4C1KNWO2EGC7XQSOHHCG
4C1KNWOOLX3609QY8XMM 4C1KNWOOONX75CY4UT59 4C1KNWOOZCGA93PFIF8A 4C1KNWO382CMVEOUSNOS
4C1KNW02J004MG6SQ0G5 4C1KNWO3M87HTF7340CV 4C1KNW01T46JD3UQT7HJI 4C1KNWO2FCTWGPRUD4YH
4C1KNWOOYVWD36ZONYR7 4C1KNWO0J1P9448U408W 4C1KNWO23PLEFC7KB2AD 4C1KNWO3KZ8PECLPFOYG
4C1KNWO2R9XQKQ78057D 4C1KNWOOK8KY014RQPYZ 4C1KNW0214CPPU4IAOCJ 4C1KNWO3GQ4HW8010IPD
4C1KNWOO71SXVVVOLFR4 4C1KNWOO5BY5YYU021D6 4C1KNWOO87FVHQ7A76S8 4C1KNWOOOFGOR2ID5XDO
4C1KNWOOVKLBRRPHNYHK 4C1KNWO283PLATHZWNUM 4C1KNWOOE2NKKEB1RQSC 4C1KNWOODUSDUZ4ZF2RE
4C1KNWO3DPOOIORCHBBI 4C1KNWOO9X7TLZK0724D 4C1KNWO2020VVROLX9BN 4C1KNWO3STWSRRFWSIYSE
4C1KNWOO7YO0ZO30UTGE6 4C1KNWO15DPRSIE8SP7D8 4C1KNWOO1L7EF3EPMDI6 4C1KNWOOFHKHX2NSBJIU
4C1KNWO2XRJBR7RX0ZSQ 4C1KNWO3DZAKWCOYX3PD 4C1KNWOOSNYM8ZB6357R 4C1KNWO1P2NJ4M145UM2
4C1KNWO2ZUWS5CYERN4V 4C1KNWOOZYALESFZIFNY 4C1KNWOOK2HLV56F8KOV 4C1KNWO04BB7VRYFSEIL
4C1KNWO2FSOAYHAFEORG 4C1KNWO3SGWO4XTIP34E 4C1KNWOONBMLOPXUQWQD 4C1KNWO21E1YAMM6S1RT
4C1KNWO33FUSPKNROC1N 4C1KNWO29W79ZFCYDY7A 4C1KNWOO4ESJCRJIA2BK 4C1KNWO2REY66IXXTA7S
4C1KNWOOOWAESGBCYGBW 4C1KNWO20RGXUKOUG4BI 4C1KNW0O22JXR2IX0ICCJ 4C1KNWO11YXARSXPLE6IK
4C1KNWOOC221IZH6L27V 4C1KNWOOASEJGDKKSFUP 4C1KNWO1M6MOTDD44TEU 4C1KNWOOGHLJZU34ZK7D
4C1KNWO3IJR3MCO03FZL 4C1KNWOO01J8ANI2C6ZMW 4C1KNWO2532FTCH6S30B 4C1KNWO358YDGE2FNOMO
4C1KNWO3MO38RGOIFTWV 4C1KNWO1WB605M8ZBBYS 4C1KNWO32Y2D89VARODS 4C1KNWO2LOAM32ENAZSA
4C1KNWO0397B403EKS5CQ 4C1KNWO1GPS70MFJEGKP 4C1KNWO1ZZ8GWIB7IEMM 4C1KNWOOWVOSMIUH2UU9
4C1KNW02G4131PLCK20H 4C1KNWO34MQOUE9ZKROB 4C1KNWOO58UUPVGELYBK 4C1KNW03A5448J1ZQ1DR
4C1KNWO3SFTPS8CPPPUH1G 4C1KNWO0453BFWPFJW1K 4C1KNWO20LSGJS8MJOLY9 4C1KNWO30J97QMLPOFSA
4C1KNWO14MJUAEEKBVZ0 4C1KNWOOJX3G54POFMNY 4C1KNWO3GBBEOS00V8UY 4C1KNWO3IMIK38DSSY4W
4C1KNWOOUTUOHJLCMGIW 4C1KNW0144Y60SQQYHO4 4C1KNWO2RROT3ELYY7LU 4C1KNWOOCSS76L6ZX0OVF
4C1KNWO3MRBO4RF75MGN 4C1KNWOOKOETLUZCAWOZ 4C1KNWO0J72CW231XURO 4C1KNWO2BFR80GQGONDS

A.2 Dataset (Medium)

Seed playfield generation options: object size = medium, density = medium, spacing = medium.

3Y64YR4365S1HS4T40GBQ 3Y64YR41AOBPFQJNGRBE 3Y64YR436JZS7MORPXQ3 3Y64YR42JKTG22KJOEOH
3Y64YR4033GBPKOV(3B5 3Y64YR4154C0OXBXLOMLS 3Y64YR40KNMO356FXN7C 3Y64YR41MU9JWS5HRCVF
3Y64YR401500Z12601M3 3Y64YR4150Y93BYFEGVR 3Y64YR40UFROL8QOOXRD 3Y64YR43UIXDT7MFQCC7
3Y64YR43P7TWTP3TVJOAS 3Y64YR4OPIH85W1EMH80 3Y64YR432NA383EDGOBF 3Y64YR43Q)2LUXBO7AFDB
3Y64YR42VOSVKGPH33BU 3Y64YR40UOLWZ4BKXYOE 3Y64YR4A40FARTNARAH2RT 3Y64YR40UUCFQWTXZUOW
3Y64YR412Z1UMRBUBMGF 3Y64YR42Q7ZS723M8DRI 3Y64YR40DWPYVZNUZQK2 3Y64YR42ES50U72FHBHVO
3Y64YR40SMUUY1JTDDSY 3Y64YR40X5AFASKPVO55 3Y64YR41TEMAU9HU46DS 3Y64YR43FNDSKUPYW71H
3Y64YR43EIFOIVIPMV8V 3Y64YR4203G1KRRAB2C3 3Y64YR4300D7NOOLEHVI 3Y64YR430B5117S42PEL
3Y64YR42VOBBEXAQWLXF 3Y64YR40U9Q7ASZ1VHTM 3Y64YR42J2THP48C2VYO 3Y64YR40KAID3MX3S3RY
3Y64YR415PQMEVZYDF8L 3Y64YR401RUCPT6C22ZJ 3Y64YR4029K6CAUKFCFS 3Y64YR4367WOU3ZLCV4L
3Y64YR42KQ2HWQUPET6H 3Y64YR427PW84WLHOSNN 3Y64YR431C4IP53KTYGL 3Y64YR40UMYVI188GZD8
3Y64YR40H642ERPWKK3T 3Y64YR407SY730EU481Y 3Y64YR42UEKYMY4CY61J 3Y64YR42MOZMN124WGK3
3Y64YR42YFFONP7UMGUK 3Y64YR41B4MASGUGOD1E 3Y64YR41NQ6CL3PER32B 3Y64YR42FSUEUKOYKYZF
3Y64YR40EBEEXZK4DK90 3Y64YR40MGC60QEO012NY 3Y64YR42MLSY7ZONZRDX 3Y64YR43D3NOMBNDRABJ
3Y64YR42PPTGRGA3SR58 3Y64YR41XYGJPLSBWCGX 3Y64YR43VWO2KZOV722C 3Y64YRA3VAGOQIGXEYWG
3Y64YR41LKSGAAOSCSXW 3Y64YR40ABWFAB50ELGS 3Y64YR43TMU4MSPMK4EN 3Y64YR43494BVUAZ1KDL
3Y64YR43UTLP6UEGMUYZB 3Y64YR43IZ14PSTLZJYL 3Y64YR4357QHH2CVH1GA 3Y64YR42SQJIJPI73GI6V
3Y64YR42NDPB2PAOPGBS 3Y64YR40Z98LWAR3KNR7 3Y64YR42T7L5KHO50588 3Y64YR43TLZKC40GM2Q0
3Y64YR41S9TILOUQRSCEW 3Y64YR40ZJHOOWHC11WL 3Y64YR41PLO890KUBYAK 3Y64YR40WJVCEDSV4ZDB
3Y64YR42Q158P029010C 3Y64YR40KEOL6UDUKQIU 3Y64YR402Q6NW4OTFVSE 3Y64YR43HSUSXQ6303RU
3Y64YR42ZZC5KTX02RCG 3Y64YR41N43YGRI8BML3M 3Y64YR4148DMR6430IRH 3Y64YR43NE3ZORYVMSFC
3Y64YR42DMMOSZ92FD3G 3Y64YR42R4TIEC8P02DJV 3Y64YR416FT67L66CMIJ 3Y64YR42XPAWRU4ACLTOY
3Y64YR405WDFH440EIMY 3Y64YR43G9J5DU450VKS 3Y64YR42HB2XKMFNKHZA 3Y64YR41QIQODCLHZWKZK
3Y64YR4A0A7SUZHOZ73KF 3Y64YR42R4DIAKVZETHV 3Y64YR42R8FP7DIM8X2E 3Y64YR43KPHDN62GJ4BN
3Y64YR4388VE409W4XEQ 3Y64YR411L.2UO0965ADLJ 3Y64YR41RWBWINMBXLKE 3Y64YR41STORS57D65F7

A.3 Dataset (20-40)

Seed playfield generation options: object size = 20 to 40, density = medium, spacing = medium.

v1.3

24/27

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

43NKKC02ZX3VI4Q84560 43NKKCO1SEOYXGOYNKBT 43NKKC0311MTO4T6YCEL1 43NKKCO2IZYN2TUF7QKO
43NKKCOOBUENP8S8UTIAXS3 43NKKCOOW7ARSSPH4AN8V 43NKKCO070JOMZPWGET9 43NKKCO37YDDUVNWN3GO
43NKKCOOYO9IWD4BI4SKA 43NKKC02Q7CG8CCLBR24 43NKKCO3MTZOQRP473DG 43NKKCOOVSU3YTVSTHEX
43NKKC0320GIS8QK2M01 43NKKCOOMNU40PDAGWNB 43NKKCO17JW7Y7FKMGCA 43NKKCO32PIUIBWBA7MS
43NKKCO1F6R8KV2J7PSM 43NKKCO01J719ELRS5XR00 43NKKCO31MHN4QWLA84F 43NKKCO1MMZWVWBLQMKO
43NKKCOOQLFMU9CB4B1U 43NKKCO2LS30PL75D24D 43NKKCO2WLK4KT6F2R4S 43NKKCO30ZNFDESCCISU
43NKKC02D4ZGQI7I1T2M 43NKKCOOAD4AYXCYIZUP 43NKKC02J8L1KI7U728Y 43NKKCOO1CNUY6NOIFQR
43NKKCO2QF3GWAT4SWY2 43NKKCO01TQ4Z20SXBLGE 43NKKCO2P4POBBG2HHFD 43NKKCO3QAHPAIGS5XESR
43NKKCO22DFPZV1RY5GE 43NKKCO3W4PH1F2F8HOX 43NKKCO3AZFK3150ZAJZ 43NKKCOORWNTH7XXFX7U
43NKKCO2WI7THJI1AOM17 43NKKCOOB28RFN57K7FJ 43NKKCO19ZAOFNOH44KF 43NKKCOOUAC17MMNUCBW
43NKKC02J4P8RL3N7TBE 43NKKCO3KOX0ASS3QHLJ 43NKKCO1GSONSUMI7ZJIV 43NKKCO1PHX3G7UVPAVM
43NKKCOO07V79M23A5WSF 43NKKC0137UF12JMZDZF 43NKKCO1DQZMLUSITG1Y 43NKKCO019S772V1KXJIP9
43NKKCOOE9JS5VMOII5SD 43NKKCO1WQGOBUNK1Y5Q 43NKKCO02ZLJINOQQB5VN4 43NKKCO20DORNSHWKEZ3
43NKKC0282YG4QLE9SO7V 43NKKCO2FDHMNDC3COP1 43NKKCO1EYKF4LWUTUC1 43NKKCOOSK3PTKFKN1L1
43NKKCO0047F79IOR6BBP 43NKKC01ZCVSG8SHD6VB 43NKKCO014EL2VUO2GNBW 43NKKC02817QRYJTJTOD
43NKKC013090BJMM6MKO 43NKKCOOOD2JBKG6VLG4 43NKKCO30HBDNFOW447T 43NKKCO2MTAVCOL39AAZ
43NKKCO3QEGRXVTZNYOZ 43NKKC0247RWZFXEQOR5 43NKKCO1N37GZFB8NKAX 43NKKC02JYGOS6A0ZX6V
43NKKCOOIIMO96SQ5KL7U 43NKKC0272QDD73VVJIBV 43NKKC0318S7FTLIJWXD3 43NKKCO1PD8DEIKYGOPG
43NKKCO1LUPSDFESQF1I 43NKKCO3IMWPL7COPVGS 43NKKCO01PB4U406YHPBU 43NKKCO10NUD3FBMOE99
43NKKCOOI4IBPIC6QSZK 43NKKCO1TKR3NSEJ5M2H 43NKKCO3HPVRVBMESTHS 43NKKCO1SRPH5XA67XMJ
43NKKC01J4D6EEFRL8S3 43NKKCOO9TYVOY1SONXG 43NKKC0223Y8SAVL3GUOS 43NKKCOODGOGOWAXO0IV
43NKKCOOALXDAAVGPO7P 43NKKCO20MRZMEWIK2L7 43NKKCO1N1DGDK72939R 43NKKCO1QFVZIAJO3XL3
43NKKCO3A3PXXML178U7 43NKKC02569DXJXB3R0O0 43NKKCO012POITG2Y7EPE 43NKKCO1G1M6KNSTSRC3
43NKKCO10UBROVT7EFJ8 43NKKCO3Q3K9TQGYZXFN 43NKKCO2IPLNGMOLSQXT 43NKKCO0156ZXZ5GYZHQV
43NKKCO3AZQHY8P9YQ5B 43NKKCO02KX001V1SK920 43NKKCO1RYV7KMHLUPOT 43NKKC021J8J3R1VMSG6

A.4 Dataset (15-30)

Seed playfield generation options: object size = 15 to 30, density = medium, spacing = medium.

4298JQ02HLK2K0U4I25D 4298JQ03S5QWR3NOIOSM 4298JQ03ES33FWGVGSQ2 4298JQ002NV3DMBCO72M
4298JQ0046XGESSS5TJI7I 4298JQ023RHKOI6XNIMO 4298JQ01DRMIWSTUOTHK 4298JQ00Y57WRQ8U3DO6
4298JQ02X9NDODYBN7IJ 4298JQ001KPEE3J05JKI 4298JQ01MZ30UAEST6WQ 4298JQ01N80YY3C1384B
4298JQ038PJ17ACH4A74X 4298JQ00Q0BYOMMFVGJIGA 4298JQ02L1H909YTO6P3 4298JQ013GVP17G32XUC
4298JQ02IYPLBNRF3RP8 4298JQ02FM79HX6P2QKI 4298JQ00UQBNWXV6F719 4298 JQ02A9F14NUBAYUC
4298JQ00UNOEUF82290P 4298JQ00G7KLJIJM2YDD1I 4298JQ02YLXEASKDOQVA 4298JQ02PE176NRL55NU
4298JQ03KZZFFOFCRD20 4298JQ03DKM5ZPAHHM1U 4298JQ02A00Q2JLRRL6EF 4298 JQ02PCU3RLONM6CT
4298JQ03SGYW4JAOSTD7 4298JQ01H40MORSONSOT 4298JQ01GY1QQU2B2GBJ 4298J(001942GKBUS20R9
4298JQ000VWO02S7VYZ16 4298JQ036PX6WEW711ST 4298JQ03F8GE6Q0ISP3JG 4298 J(02IEL3EKYVEWOQ
4298JQ0235SKA46BTDOE 4298JQ00Z5GW1UO6GEN1M 4298 JQ02WF6XDT3R25AS 4298 JQO3EGO6BESVOBA2
4298JQ026594FIPNE94D 4298JQ01IL20TRO3U8SS 4298JQ03JPY2C1IKX5SM 4298 JQ01XHQHIT1QOXFF
4298JQ01ILTQWAUUZKSEB 4298JQ032048ZWVGGJIC2 4298JQ03PJQ491LUHRQD 4298JQ0315HHINRCGGTE
4298JQ02XZA62RJPOKK6 4298J00151RLY4Q4TCH2 4298JQ01EXZJY4CORVIC 4298J(Q001EN8T210D9L3
4298JQ020DG083S502L0 4298JQ02802GE299EJSF 4298JQ00E3Q0KSM1XZWC 4298 J()00DYLMJIGY6XMZ9
4298JQ035FBTZ2SVLQ5M 4298JQ01V73YZJ1DUSSF 4298JQ00YKOBWSSV1SCL 4298JQ03B3GX158AELAD
4298JQ00HOY4USWBO87S 4298JQ02NKTUS4T75XJA 4298JQ0007HQOBU1XZUT 4298JQ010I64ZPX4FAZ0
4298JQ01Q5LK6K7VCW41 4298JQ016EADOMQPESW2 4298 JQ02DRCKOQR4CELN 4298JQ025GZF61RROCGT
4298JQ02NP2JKRUOGZC3 4298JQ037RW55CAIR1X9 4298JQ01CPS5WS5INKKCML 4298JQ02J0Q6XTM60DRS
4298JQ0321PZ92VXQU76 4298JQ01REITXCFFOKAB 4298JQ010PZCMDX4G79K 4298 J()03RQHVKIQHES8A
4298JQ02BD99CHJIDM1INJ 4298JQ01TMTZDODPOFV9 4298JQ03CJZWFECNCA15 4298J0021726M81HH94K
4298JQ00WOT3UWLOID6S 4298JQ002GO07BNUGY5G 4298JQ01ZDXE4S01V4W1 4298JQ019SA8G5WP1G6F
4298JQ03NG5U9J301CTO 4298JQ02FU6AWAHWD3CD 4298JQ03JUDOPS5R7YNSS 4298 JQ02WGBKESOKSZ4C
4298JQ02FQE3FI6W8M5K 4298JQ00BQ5ZMMHFWOJC 4298JQ01NKPQ0Z24J00N 4298JQ0225VD8070YVC6E
4298JQ010V30OMLTLBUP 4298JQ01EWQSO0H3Y41U 4298JQ02D58VMBDXBOT5 4298JQ002Q6QRC5YFZGT
4298JQ01LS900HJIQUIB2 4298JQ01A892KFTS4CL6 4298JQ02NFGDO7EQAJOH 4298J(02HJYN6CNS546P9

A.5 Dataset (10-25)

Seed playfield generation options: object size = 10 to 25, density = medium, spacing = medium.

v1.3

40V3JZK2RROA7CFIOPKF 40V3JZK1KMPL1ZSIPSAI 40V3JZK1JOQHGV7Z385X 40V3JZK13HFLZODS7THAJ
40V3JZKOXYDI2Y4R3D4F 40V3JZK2QM85BB47C6AQ 40V3JZK3SLOSPKLDDOG3 40V3JZK1NZHEVVOO9FQO

25/127

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

40V3JZK1LWJIGL937G88T 40V3JZKOOQSYIW307WT6 40V3JZK067 JJHUKONGHG 40V3JZK2HAZ3800MLC1C
40V3JZKOPHXD8DHM2LNZ 40V3JZK2CVPARAH310N4 40V3JZK17VNRDU3ABKFM 40V3JZKO2N3TPQLCYRJIW
40V3JZK1ELCIMP6I5SBGA 40V3JZK3B4STEURV27SH 40V3JZKOPWV23ET73QQ3 40V3JZK305TP4HWIIOHO
40V3JZK2POLXXW74YHR9 40V3JZK3MY60A408NKLR 40V3JZK308FL873X40CW 40V3JZK1PMWGOPI4PKML
40V3JZK30ZDO0O4AHVIOB 40V3JZK18ZTI511B8RSV 40V3JZK1D1TN38T1PA50 40V3JZK14HQX89RBEI7P
40V3JZK3S1L2RGE7YXOM 40V3JZK1AEWOJTIYOALV 40V3JZK1FAYSUQ1JYAQS 40V3JZK28EVD8N1MAPO7
40V3JZK3K075RTW604PK 40V3JZK1ACTMICW31XRL 40V3JZKOHRPA37ECEVX8 40V3JZK1RCJIG4P4PUX7X
40V3JZK3CR1141Y2804X 40V3JZK1M9JHKVCTD1LX 40V3JZKOTZNLOQBLK6IZ 40V3JZKOGM71YRDHOD23
40V3JZK37GAHEOYI3YMR 40V3JZK129PZXFQFZ8AC 40V3JZK3CG3NONKHSRPN 40V3JZKOBDBAOKB78EEY
40V3JZK2U1CYVOZ6LQJS 40V3JZK3PZ7E36KJJ61I8 40V3JZK2KOVS2SFO8NIB 40V3JZK1AS4JEJBMSYZJ
40V3JZK2ZOEO6S19TDIL 40V3JZKOUSRDRHVNARXL 40V3JZKOXGFFND480B1N 40V3JZK3P7MNPOTCIASH
40V3JZK1PMB3UOL7LD1D 40V3JZK1WAK79Y414TI9U 40V3JZK1ALOMX8V1YBO9 40V3JZK2LR7GWOFPIWHO
40V3JZK3IFYSM25BHVVJ 40V3JZKOQ4G7YHKFTXDM 40V3JZK04Z2ZWQ5MR7V9 40V3JZK1X5PN1TXR3T19
40V3JZK22YRB67528JL2 40V3JZK1W8XK2LI9Q5ECF 40V3JZK0T48H8W6H4485 40V3JZK10V2RDOKYAHIO
40V3JZKOWSAEW6TORNGA 40V3JZKOMM21AMCO1KK8 40V3JZK30PXS0J933GTT 40V3JZK30ZKQ2NYDE7F4
40V3JZKOUYXNFZTOJ8GL 40V3JZK1KXJK59ZB1GEN 40V3JZK19VPIPNK7EKT5 40V3JZKO63I5PXCCOU3M
40V3JZK25789G279GAI8 40V3JZK2NI4KXBH1GWT6 40V3JZK3CV1H7ZDKN8OI 40V3JZK1VIMOEQCZWETQ
40V3JZKOWSY7ZXRTXHNN 40V3JZK10QOW4XDH3SLX 40V3JZKOXJAOSROEV7F4 40V3JZKOSNXP2HUS7GXI
40V3JZK20QTL6CT14YW3 40V3JZKOGLHNT3ZM8UCS 40V3JZK1IIXYDO4L10KY 40V3JZKOIYRPODXWJIO6V
40V3JZK34CPF8IGQKCMO 40V3JZK1WTW74QUTH6LH 40V3JZK2KEM7RDNIRMRF 40V3JZK27A3LCMMVVESA
40V3JZK23U7XFGF76PMH 40V3JZKOKZWHT8YBM7TW 40V3JZK2YDH2IDUXFOPI 40V3JZK3VES8B1PDLHGZR
40V3JZK1EL18S4WYXFWK 40V3JZK1G4360L9Q2C0G 40V3JZK1NFRROMETK3LN 40V3JZK1P2Z9T5BCY3U3
40V3JZK2ITUA1YLMBJDW 40V3JZK3VAGDEKONOPY9 40V3JZKO3I9PIA51K108 40V3JZK31BNH87DMEORY

A.6 Dataset (Small)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

40UWJ5C21PCOTZQ8QC43 40UWI5C0371FJOSFVVOW 40UWJ5C2JKXW54X0D4ZU 40UWJI5C3UBPPE681KXJ0
40UWJ5C29D63NVT8202K 40UWJ5C26NCSOE1DWQPT 40UWJ5C1ROVG109WIPCI 40UWJ5C2TCFVKNBS03J2
40UWJ5C248YMOYAXVTFU 40UWJ5CO0X681KMR6D4RJ 40UWJI5C1GYZ5LH6SYMUY 40UWJS5COTTL3KNMSQ8Z9
40UWJ5C2HGK76UZEFO0I 40UWJS5C2FUZIGPYSDW36 40UWJ5C3805YPTYNHAF5 40UWJSC3QAHYST1GREFCO
40UWJ5C3HVOX(QBP1MNS3 40UWJ5C16FZD4YEHX084 40UWJ5COPGIT81KQ3Z1S 40UWJ5C2L4V3G5XM7HX8
40UWJ5C1YCTTVR3POXRF 40UWJ5C3CW77PSV5Z2J7 40UWJ5C1U2A5FP8VAMBM 40UWJ5C029UI7MBGEESC
40UWJ5C23S00E2YDPIVX 40UWJ5C1AA25CK2P2REJ 40UWJ5COMOULNKN1U3VV 40UWJ5C2BXFEWM2LTLRL
40UWJ5CO73KEH9EFTXAL 40UWJ5C30M5HQC1TSDHC 40UWJ5C1S2J70KTTN14L 40UWJ5C2UG6SEYX4ANUF3
40UWJ5C1FZQBAVNSKURY 40UWJS5COTIIFDXKC8WOF 40UWJ5C128IWADCHIFZS 40UWJS5C339FZRUBTGTZI
40UWJ5C3HGQLSYRIOPKZ 40UWJSC3EOPRTICOWMYM 40UWJ5C31NXHSFAPWKTX 40UWJS5C14CDT3YHCARNZ
40UWJ5C2K7NGSK350UJS 40UWJS5C3ADVS55MNFVSRA 40UWJ5COZXEVMOURUDKS 40UWJSC2TZ6WOEA1ADTF
40UWJ5C1HWDOMNYIOW3F 40UWJ5C0060W6US7LV7J 40UWJ5C19C7GCA3FRYXF 40UWJ5C0199R0OFPRFCI4
40UWJ5C034D3WNZ8WKQC 40UWJ5C2DMFELSKOZT7D 40UWJ5C2HAB9J7DOFZM8 40UWJ5C1GHU37UHZB383
40UWJ5C1J958YZPPQLAR 40UWJ5C176HHBYMLUB7T 40UWJ5C2L64IIPPKZKPP 40UWJ5C1ZAZ4JK426HZE
40UWJ5C2HXEYD164YU8S 40UWJS5C1ASCTSEUBZFHI 40UWJ5C1FUD6IDIWT1E8 40UWJ5COF416CI0OT33N7
40UWJ5COWIRLAKR1QDHY 40UWJS5C2C5XYRIGHKE0Y 40UWJ5CO6E8H31SSQ4VZ 40UWJIS5C34KYS50HNZO9R7
40UWJ5C1UAY4NLV94DGR 40UWJ5C1FJ39Y7HIGOOP 40UWJ5C1S7I3GV85W704 40UWJI5C3VXAPJZR50UG2
40UWJ5C002N310W5VCUL 40UWJ5C2F7NOQPCBAYPB 40UWJ5CO20LPRQ3765HW 40UWJI5C298JO8LP2XULS
40UWJ5C2GZ4E6PXGLP25 40UWJ5COAZBZ8Z4HH6AB 40UWJ5C3QEMAASBRWR6XG 40UWJ5C14V20TMR38HPM
40UWJ5COK1HEWPONXUJB 40UWJ5COP55NQNY3DAIY 40UWJ5C1QEDUVD18WMQ2 40UWJIS5CO52RCYUZCOQOT
40UWJ5C3H6NNPLIDS8EN 40UWJ5C2C11K7FOS5F03I 40UWJ5C21YQQR2XS4G52 40UWJSC3TCN23H1DJR1J
40UWJ5COV4GMBCO1VJI8P 40UWJ5C2I46CY7QSKM2C 40UWIJS5C1ILMWREFNFGEL92 40UWJ5C205Z4R4Z10ZWV
40UWJ5C2T80BBZI6GKWOQ 40UWJ5C22M30GF80RY60 40UWJI5C3NOM41PCS57QT 40UWJ5C2EARDT7MCGHOM
40UWJ5C1967UJ2G97DZ8 40UWJ5C3R5SW1VCOJILX 40UWJS5C1E3PYKH64TBAF 40UWJ5C1B4ESRNSUTUUE
40UWJ5C3SJOIGKTVLQV5 40UWJISC3C5B5XVNSM2ET 40UWJ5COXEJH2PB4ZRKD 40UWJS5C1PP1EFMGOIERA

A.7 Dataset (Segmentation)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

v1.3

40UWJ48276AXVDYARA35 40UWJ482Q0UOKFBAHAMHK 40UWJ482U7 JZRNYOM878 40UWJ481BV180TRUU4BE
40UWJ4820N8VENSPGMTC 40UWJ483ROR92CBXVHY8 40UWJ4832XKIJ34Z44EF 40UWJ482FDYKZH11I2P9
40UWJ482KHESIY50MAJB 40UWJ481MRKG3AGZ42RV 40UWJ4832YOUMZNPQFU6 40UWJ483BI1A71HUTZKQ
40UWJ4827UVQCXANBB6X 40UWJ481B3SGHQQOLBBJ 40UWJ482JKI19NMO2W8P 40UWJ482J6IKTHAE3KSR

26/127

Roan Hofland & Emiliyan Greshkov ConvexMerger 2023-05-14

40UWJ4801XL4QCUMSOP4 40UWJ4826T4IFCZV107I 40UWJ481WF2S7H7NZLSA 40UWJ483PVKGO60QNSTS
400UWJ482QSZ7F1A2J6K1 40UWJ480ZSSJZIOFI4D0 40UWJ482XLPXDOI1GBXU 40UWJ4810WZSYUPS8LX9
40UWJ480K9ZOFPTYKI6M 40UWJ483BAFSQ0TGI41Y 40UWJ480DAH1M471128N 40UWJ482T2R806LYVX5Z
40UWJ483P5AHY9BFV94G 40UWJ4809WHTLP1Q8RA5 40UWJ480443ZUFVOBLPS 40UWJ482KI2FI1PKNHGL
40UWJ482VFMENEPOV1AF 40UWJ4829KJXOWP7W2DI 40UWJ48284F81XURJ5AH 40UWJ481K8FKDEKTK8NS
40UWJ48043R97BX02YLT 40UWJ48053AP(846E82Y 40UWJ4820F98L9VB4230 40UWJ4825CBYSWKJIJWNO
400UWJ4815LYPX7SBO02F 40UWJ4808U6PW1I180YB 40UWJ481QCRKB4ADL57WA 40UWJ481QI676E637UJJ
400UWJ4802U60N40XMONC 40UWJ480IWTD41YZ4RNO 40UWJ480YK21POROQX3H 40UWJ483NIPQG2WCFK1J
40UWJ481L1WQYAAQDMTU 40UWJ480F JPG27LACVDE 40UWJ482TEEFAOPBR4KS 40UWJ4802UJ5WECDLAWS
40UWJ483GWI7POJBK3TP 40UWJ480MJ76HR0O02QVL 40UWJ482ZSA22LHWODGY 40UWJ4826B7TROWV3UTN3
40UWJ482VCOQ65KCHO5H 40UWJ481UYPCDWYEXOP7 40UWJ483M7CKMIVINCLS 40UWJ482UNIWDOF932HR
40UWJ481IFEXFSEUW17P 40UWJ481R607UKVFS8HGO 40UWJ480EOD3TBPKG5UO 40UWJ483LB8BRZFQZSED
40UWJ481HTZY4SFY6CTO 40UWJ481D7ABEMTOW88K 40UWJ481JDGCM3S2ZMZ3 40UWJ4813FMO0G2VCIGZ
40UWJ482MR3JEIOMJIPZF 40UWJ481XZKDO8QUJOWC 40UWJ483DDS5LY1K08QK 40UWJ483RQAFOOT2TMNTM
40UWJ482MOIS6LYQCOS6 40UWJ483I3TN3QU7XLUC 40UWJ483CKEP9JY999T2 40UWJ482MU2IJWTYCHPS
40UWJ481QX0LV3TLXPT8 40UWJ48041TQITIYL1IU 40UWJ4827BPZTOY01FPX 40UWJ482HUHXN7SQOT8D
40UWJ482UR01DGUGD2RL 40UWJ483DP9JQ4QQR1I7 40UWJ4828IBWLESI6MFL 40UWJ480KNISDMMCO1A4
40UWJ4828R1302PMDOAF 40UWJ48228C0OBV8BNH1ZC 40UWJ480LP47B5CIJP2QI 40UWJ482QAGXFRH23X92
40UWJ482JPBLLSYVSANP 40UWJ483UOROF1XNVGKH 40UWJ482Q0YSFRH21UYUG 40UWJ480FREBOOMHA3KO
40UWJ4800EZMO6WEWGUP 40UWJ483BPKATWBRTST1 40UWJ4820T6Z3WHRQX1N 40UWJ48270GPBWMRSU2Y
40UWJ483B2QS8ZAUWFZJ 40UWJ482MV7BGXJ27DH4 40UWJ481Y108EVIHICHC 40UWJ482E5Z0RK4NR2T6

A.8 Dataset (Decomposition)

Seed playfield generation options: object size = small, density = medium, spacing = medium.

v1.3

400UWJ48301I977M388POU 40UWJ4810B3BDOHJI52V 40UWJ482FIG8B7JLJI8SY 40UWJ48173HIDNJ2WPZM
40UWJ481XTFMDVOOXGYW 40UWJ482V5FDJPRILB6S 40UWJ482VX12AM8C8ZHT 40UWJ48103YLFZNTZDD4
40UWJ483ICQULE1ZK4U7 40UWJ481SAYOWMAF8V2P 40UWJ4804030AMH4VVLC 40UWJ4813ZKDEI77RZEC
40UWJ480XIRRLXLN52BD 40UWJ4819JNMC1HP3II0 40UWJ4822SWLS80TC6T6 40UWJI480GAUQLEUS1NES
40UWJ483A2GYGVLSH3PY 40UWJ482E10312S85CG2 40UWJ480E1TJIQOQFTZB 40UWJ483JX58FFBB100Z
40UWJ48123JK300FISAE 40UWJ4800PNEHUBSHHS3 40UWJ4813CFVVQY6XNO3 40UWJ482EBPMQ5U499HI
40UWJ481YMOAMO02JXAH 40UWJ481DKHLGF98PIRO 40UWJ481MX01W1YU0Z61 40UWJ481A4VEUHVS81RI
40UWJ482R0OA8B8JQOQTL 40UWJ483J0GYSICMYAZN 40UWJ482RYX228AE3MWB 40UWJ481ROCB7TRI2E1HB
40UWJ481MY16FN46WUNS5 40UWJ48010NOMVOEMS09 40UWJ4835UHQ50A8CG4V 40UWJ482M60ILI12TUSZ
40UWJ4824PDOEM5XN978 40UWJ480XYQDAHT119XE 40UWJ480NQEXWMTNWJIOX 40UWJ4834810C1AERX5M
40UWJ48395ZP30SRUAPI 40UWJ481EIWEFM13IA03 40UWJ483Q80DZ9KVGAG6 40UWJ482SM21SBM2TI20
40UWJ4801R4J6ZQYD7MI 40UWJ482HJLGNTI1GTA6 40UWJ483H7 JQ6FKO9ZFU 40UWJ481BKUEV1VMIDDT
40UWJ480AE9I6ZJEJWOA 40UWJ48120QRWYATUNEQ 40UWJ480KF306VGE4GRK 40UWJ482D3XPEK1I0LEX
40UWJ48384WHGO2MNDJY 40UWJ480R5EQU2EODEPT 40UWJ480YW2SKTC1LUHK 40UWJ480L4SCJOCKGONX
40UWJ482UY42PCG3HXPF 40UWJ483I3ZF08Y34XZ6 40UWJ480F350V27GCRPD 40UWJ480PA1N6VVN7P1B
40UWJ481DNTRIGPZI3ZW 40UWJ4832MCTSMLX0AUO 40UWJ483IA3G45NYFIO1 40UWJ4837FX5D2KAP9AO
40UWJ4800WQ7KRQ50FL6 40UWJ480MEG83K62(01CA 40UWJ483TOHNSPVB5BKH 40UWJ480WDDORVO7LY8Y
40UWJ480KRPXWH3Q7Y35 40UWJ480J3503WRP2T3M 40UWJ481NXR7Q41V6GIC 40UWJI483019ZZ64NZP6Z
40UWJ48305IZF8XGAHOM 40UWJ4800KIVOZQETUES 40UWJ4839NDHBKSCOTIT 40UWJ482NOCGWP2LTOJG
40UWJ4834D6USN7P7PX3 40UWJ480JNBWQYKBY1HX 40UWJ482MQ1VT52WX368 40UWJ4803141EXTYH2DV
40UWJ483HOS69EN4JLP8 40UWJ482AIDI7VNXOZOE 40UWJ483J8YYLUHZUGDR 40UWJ481NEG3BRGIBLVL
40UWJ483ILJRX15QQTAL 40UWJ480UJM5DIELEVD3 40UWJ483T2D411EVXNYB 40UWJ4831JEQKGPJNUN7
400UWJ481959090J34HTR 40UWJ48223ELKVBT3G7N 40UWJ4808H3I9XRNVJIX8 40UWJ48259ZBOGU7DEBG
40UWJ4839CSQFXD8P4CYO 40UWJ481Y5C5867UEUOQ 40UWJ481 JMREPPOOODKT 40UWJ481BTAEUBJ3HGEL
40UWJ482RWWFBQG7MUFW 40UWJ481CI40WMNRNU6I 40UWJ4836LHSY2LTVP3J 40UWJ480SZ3PWDIVIUTM

27/127

	Introduction
	Previous Work
	Algorithms
	Convex Object Merging
	Dynamic Vertical Decomposition
	Efficient Segment Intersection Testing
	Miscellaneous Algorithms
	Conjugate computation
	Line extension and clipping
	Hull splitting
	Helper line computation

	Evaluation
	Construction Characteristics of Partition Trees
	Average depth of segments in Segment Partition Trees
	Segments per node in Segment Partition Trees
	Trapezoid depth in the Vertical Decomposition

	Visualisations
	Vertical Decomposition
	Segment Partition Tree
	Merge Callipers

	Concluding Remarks
	Datasets
	Dataset (Large)
	Dataset (Medium)
	Dataset (20-40)
	Dataset (15-30)
	Dataset (10-25)
	Dataset (Small)
	Dataset (Segmentation)
	Dataset (Decomposition)

